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Abstract

This thesis investigates problems in hierarchical games. Mathematical models are

used in tennis to determine when players should alter their effort in a game, set

or match to optimize their available energy resources. By representing warfare,

as a hierarchical scoring system, the results obtained in tennis are used to solve

defence strategy problems. Forecasting in tennis is also considered in this thesis.

A computer program is written in Visual Basic for Applications (VBA), to es-

timate the probabilities of players winning for a match in progress. A Bayesian

updating rule is formulated to update the initial estimates with the actual match

statistics as the match is progressing. It is shown how the whole process can

be implemented in real-time. The estimates would provide commentators and

spectators with an objective view on who is likely to win the match. Forecasting

in tennis has applications to gambling and it is demonstrated how mathematical

models can assist both punters and bookmakers. Investigation is carried out on

how the court surface affects a player’s performance. Results indicate that each

player is best suited to a particular surface, and how a player performs on a

surface is directly related to the court speed of the surfaces. Recursion formulas

and generating functions are used for the modelling techniques. Backward re-

cursion formulas are used to calculate conditional probabilities and mean lengths

remaining with the associated variance for points within a game, games within

a set and sets within a match. Forward recursion formulas are used to calculate

the probabilities of reaching score lines for points within a game, games within

a set and sets within a match. Generating functions are used to calculate the

parameters of distributions of the number of points, games and sets in a match.
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Chapter 1

BACKGROUND AND
LITERATURE REVIEW

1.1 Background

Having an interest in the mathematics of tennis, I began research for a PhD in

January 2002, at Swinburne University. In January 2003, the Defence Science and

Technology Organization (DSTO) proposed a problem at the Mathematics in In-

dustry Study Group held at the University of South Australia, titled “Analysis of

Hierarchical Games” (www.unisa.edu.au/misg/Equation free booklet 2003.pdf).

The DSTO recognized that warfare can be modelled as a hierarchical structure

where many sub-tasks must be achieved to win a greater task. For example, to

win the overall war, a team needs to win so many battles. The problem faced

with analyzing warfare directly, is always the possibility of developing a theory

that cannot be tested, as a result of the complexities involved in warfare. For

this reason the DSTO chose to analyze tennis as an analog to warfare, with the

aim of using results obtained within tennis, to gain insights that could be used

to solve problems related to warfare.

Tennis was chosen as an analog to warfare for some obvious reasons. It has

a well-defined scoring structure that most people are familiar with, and most

1
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importantly this scoring structure is hierarchical (points, games, sets, match).

With this understanding of the research problem, the following problems were

proposed for analysis:

1. The non-equivalence of value of the points depending on the current score

in the game, set and match.

2. The definition of a model of match outcome into which the effect of morale

or other psychological effects can be incorporated.

3. The effect on the probability of winning the match arising from depleting

available capability through the effort to win the point.

4. The ability to generalize from tennis to a more complex game structure (i.e.

where there is not the convenience of discrete play events between just the

two equivalent players or teams that are present in tennis.)

1.2 References by the author

The various references developed by the author and used in conjunction with this

thesis are as follows. Barnett and Clarke [2] demonstrate how the use of spread-

sheets can be very effective in modelling outcomes of tennis matches. Barnett,

Brown and Clarke [1] demonstrate how tennis players should alter their effort

in a game, set or match to optimize their available energy resources. Barnett

and Clarke [3] show how the standard statistics published by the ATP can be

combined to predict the serving statistics to be obtained when two given players

meet, which is then in turn used to predict outcomes of tennis matches.
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1.3 Literature review

1.3.1 Mathematical models

One of the first pieces of work for modelling a tennis match is outlined in Kemeny

and Snell [41]. Their model has just the one parameter, namely the probabil-

ity of each player winning a point, that is constant throughout the match and

does not depend on service. Fischer [25] and, Carter and Crews [11] modelled a

tennis match by setting the chances of each player winning a point as an aver-

age of their chances of winning a point on their serve and their opponent’s serve.

Schutz [69] compared different tennis scoring systems by calculating the probabil-

ities of winning the match and the expected number of points and games played

under the assumption that each player has a constant probability of winning a

point. Croucher [18] calculated the conditional probabilities for players winning

a single game of tennis. Clowes, Cohen and Tomljanovic [16] implemented a

computer program to calculate the conditional probabilities of players winning a

match from any position in the match based on a constant probability of each

player winning a point.

The use of two parameters to model a tennis match, being the probabilities for

each player winning a point on serve, is particularly necessary in men’s tennis, as

a consequence of the serve being so dominant. Hsi and Burych [36] and Brody [7]

computed algebraic expressions for the chances of players winning a set and

match given each player has a constant probability of winning a point on serve.

Pollard [57] gave algebraic expressions for the probabilities of winning matches,

mean lengths and their associated variances for the number of points in a match,

and distributions of lengths for games, sets and matches.
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Various authors have developed models for rating players and predicting out-

comes of actual tennis matches at the elite level. Clarke [12] proposed a method

for rating players from elite to club level for tennis and squash. An exponential

smoothing method was used in rating players based on the margin between two

players. Bedford and Clarke [4] tested the predictive capabilities of this method

for elite players. Clarke and Dyte [13] used the official ATP rankings to estimate

head-to-head probabilities of winning a set and simulate tournament predictions.

Jackson [39] demonstrated how a binomial type model can be used to calculate

expected lengths of games in a match, which can be applied to index betting.

He calculated the expected values for match length by combining the model for

the number of sets in a best-of-5 set match with the model for the number of

games in a set, and assuming the independence properties between games and

sets. This can be represented algebraically by:

E(gm) = E(sm)E(gs)

where:

E(gm) = expected number of games in a match

E(sm) = expected number of sets in a match

E(gs) = expected number of games in a set

Klaassen and Magnus [44] forecasted the winner of a tennis match in progress

based on ATP rankings and point-by-point data. Given pA and pB represent the

probabilities of two players A and B winning points on serve respectively, they

conclude that the probability of player A winning the match depends almost

entirely on pA-pB and only very slightly on pA+pB.

Pollard and Noble [67] proposed a forecasting model where the probability a

player wins a point on service is a function of past performance and performance
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on the day. The model is based on simple exponential smoothing.

1.3.2 Alternate scoring systems

There has been some work comparing the properties of the current scoring sys-

tems in tennis with proposed alternative scoring systems. These properties in-

clude the probabilities of the better player to win the match, the mean number of

points played for the match with the associated variance and the distributions of

points played. Miles [49] analyzed the efficiency of sport scoring systems with a

particular reference to tennis. He suggested that for the player on serve, starting

the game at 0-15 or 0-30 in men’s tennis would make the games more evenly

contested and would increase the chances for the better player to win the match.

Pollard’s work [58, 59] involved an extension of the work produced by Miles

with a focus on tennis scoring systems. Pollard and Noble [62, 65, 66] looked

at the characteristics associated with several new scoring systems approved by

the International Tennis Federation (ITF). Pollard and Noble [64] proposed a

new tiebreaker game to reduce the length of long five set matches that can occur

whenever the fifth set is an advantage set. Pollard and Noble [63, 68] showed that

the tiebreaker game used in doubles is an unfair contest and outline a solution to

this unfairness. Newton and Pollard [51] proposed alternate scoring systems that

might be considered fairer than the current system from other points of view.

1.3.3 Tests of hypotheses

Various tests of hypotheses associated with tennis have been outlined in the litera-

ture. Magnus and Klaassen [46, 47, 48] investigated some often-heard hypotheses

relating to the service in tennis, the final set in a tennis match and the effect of

new balls in tennis, all based on 4 years of Wimbledon data. They concluded
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that in the men’s singles the dominance of service is larger than in the women’s

singles. They showed that serving first is not an advantage in a set, except in the

first set since fewer breaks appear to occur in the first game of the match. For

this reason they advise most players to elect to serve first when they win the toss.

Norton and Clarke [53] also analyzed the effect of new balls in tennis, based on

Australian Open data. Klaassen and Magnus [42] demonstrated how to reduce

the service dominance in tennis based on empirical results from Wimbledon.

Klaassen and Magnus [43] tested whether points are independent and identi-

cally distributed (i.i.d.). They concluded that winning the previous point has a

positive effect on winning the current point, and at important points it is more

difficult for the server to win the point than at less important points. However

they go on to state that deviations from i.i.d. are small and the i.i.d. assumption

still provides a good approximation to practical applications concerning tennis,

such as predicting the winner of the match while the match is in progress. Simi-

larly, Jackson [38] developed a model in tennis which states that failure on a trial

increases the odds for a failure on the next trial by a constant factor and finds

that the model gives an excellent fit to actual tennis matches.

Holder and Nevill [35] tested whether there is a home advantage in interna-

tional tennis tournaments and found little evidence to support this claim.

1.3.4 Court surface

Fulong [26] investigated the service in tennis in men’s and women’s singles and

doubles at Wimbledon and at the French Open. There was evidence to suggest

that service is more effective for men than it is for women (men win a higher

percentage of points on serve compared to women) and service is more effective

in doubles than in singles for both genders. Hughes and Clarke [37] found the
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serve in men’s singles to be more effective on grass at Wimbledon than the syn-

thetic service (Rebound Ace) played at the Australian Open. O’Donoghue and

Liddle [54, 55] found the service to be more effective on grass at Wimbledon than

on clay at the French Open.

Cross [17] calculated the horizontal coefficient of restitution for a superball

and a tennis ball by designing an experiment that measures the rebound speed

and angle. Brody [6] outlined physical equations to calculate the bounce of a

tennis ball when it interacts with the court surface. Brody and Cross [8] also

outlined the physics on the bounce of the ball, which can determine the court

speed. The factors that affect court speed as outlined by Brody and Cross [8] are

the coefficients of friction and restitution, the angle of incidence and the spin of

the incident ball.

1.3.5 The work of Morris

The work of Morris [50] is particularly significant to some of the new ideas de-

veloped in this thesis. The importance of a point to winning a game was defined

as: the probability that the server wins the game given that he wins the point,

minus the probability that he wins the game given that he loses the point. A

mathematical formulation is:

Isr = Ps+1,r − Ps,r+1

where: Isr is the importance of the point when the server has score s and the

receiver score r, and Psr is the probability that the server will win a game in

which the score is s to r.

Morris stated that every point is equally important to both players. The concept
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of time-importance was introduced by the following equation:

Tsr = EsrIsr

where: Esr is the expected number of times that the point (s, r) is played in

the game. With this definition 30-40 is considered the same point as advantage

receiver and 40-30 is the same as advantage server.

Morris then gave the following theorem about time-importance.

Theorem 1.3.1. Suppose a server, who ordinarily has probability p of winning

a point on his serve, decides that he will try harder every time the point (s, r)

occurs. If by doing so he able to raise his probability from p to p + ε (ε > 0 but

small) for that point alone, then he raises his probability of winning the game

from P00 (the probability of winning the game at the outset) to P00 + εTsr.

Morris derived the following equations:

∑
Tsr =

dP00

dp

IPM = IPG × IGS × ISM (1.3.1)

where:

IPM is the importance of a point to winning the match

IPG is the importance of a point to winning a game

IGS is the importance of a game to winning a set

ISM is the importance of a set to winning a match

Morris also showed that a player could increase their chances of winning by

increasing effort on the important points and decreasing effort on the unimportant
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points. He stated, for example, that if a player increased p from 0.60 to 0.61 on

the important half of his service points, and decreased from 0.60 to 0.59 on the

unimportant half, he would increase his winning percentage for a game by 0.0075

from 0.7357 to 0.7432. Pollard [60, 61] and O’Donoghue [56] used this idea of

importance to determine playing strategies.

1.3.6 Tennis strategies

Other research developed in the literature on strategies in tennis is as follows.

Gale [27] used a simple mathematical model to determine an optimal strategy for

serving in tennis. Norman [52] used dynamic programming to determine an opti-

mal strategy of whether to use a slow or fast serve on the first and second serve.

George [28] used a simple probabilistic model to determine a serving strategy in

tennis and stated that the usual serving strategy may not be optimal. Profes-

sional tennis matches are used as examples to support the claim. Gillman [29]

developed a similar analysis to serving strategies. Hannan [33] also analyzed dif-

ferent serving strategies, with the added complexity of the opponent returning

the serve in such a way that the server can counter with a strong shot or is forced

to hit a weak shot. Walker and Wooders [71] used a game theory approach to

show that the serve-and-return play of particular matches is consistent with equi-

librium play. Croucher [19] gave an overview of different types of tennis strategies

that have been developed in the literature.

Ferris [24] used the hierarchical scoring structure in tennis to illustrate the

nature and characteristics of emergence in systems. Brimberg et al. [5] modelled

a decision where a player must allocate limited energy over a contest of uncertain

length. Their model suggested that when the decision-makers fall behind in the

match, they should divide their remaining energy evenly among all the possible



10

remaining games.

1.3.7 References in other sports and warfare

The following are references from other sports besides tennis. Dowe, Farr, Hurst

and Lentin [21] described a football tipping competition based on the estima-

tion of probabilities of victory, and its connection with information theory and

gambling. Haigh [31, 32] and Henery [34] outlined contrasts and similarities be-

tween odds and index betting and give strategies based on the Kelly criterion for

optimal betting in the context of spread betting.

Clarke and Norman [14] used recurrence relations to calculate probabilities of

winning, mean and variance of lengths to squash. In particular they showed for

a random variable Z which takes the value X with probability π and the value

Y with probability 1− π, that

E(Z) = πE(X) + (1− π)E(Y ) (1.3.2)

var(Z) = πvar(X) + (1− π)var(Y ) + π(1− π)[E(X)− E(Y )]2 (1.3.3)

Epstein [23] discussed the work of F.W. Lanchester, for obtaining quantitative

results for prediction of outcome and effectiveness of two opposing sides in a

military situation.

1.4 Thesis structure

This chapter gives an overview to mathematical modelling in tennis. The un-

derlying Markov chain model is developed in Chapter 2. Two parameters are
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used in this model, being the probability of each player winning a point on their

own serve. These two parameters are assumed to be constant throughout the

match. Backward recursion formulas are used to calculate conditional probabili-

ties and mean lengths remaining with the associated variance for points within a

game, games within a set and sets within a match. Forward recursion formulas

are used to calculate the probabilities of reaching score lines for points within

a game, games within a set and sets within a match. The recurrence formulas

can easily be implemented on spreadsheets. A generalized Markov chain model

is also developed in Chapter 2, that can be applied to other racket sports. In

Chapter 3, the parameters of distributions of the number of points, games and

sets in games, sets and matches are calculated. This is achieved by using gener-

ating functions. The results are obtained analytically through Mathematica (an

algebraic computer software package). In Chapter 4, the concepts of importance,

time-importance and weighted-importance are introduced, along with some very

useful results that have applications to tennis strategies (Chapter 5), forecast-

ing during a match in progress (Chapter 7) and warfare strategies (Chapter 9).

In Chapter 5, it is demonstrated how a tennis player can alter their effort in

a tennis match to optimize the usage of their available energy resources. This

can be achieved by either increasing effort on certain points, games and sets in a

match, or by increasing and decreasing effort about an overall mean. In Chapters

6 and 7, the steps used for forecasting outcomes of tennis matches are outlined.

A method is developed for combining individual player statistics, for when two

given players meet at a particular tournament. Forecasting a tennis match in

progress is analyzed in Chapter 7. An actual match that was played at the 2003

Australian Open is used to demonstrate how the whole process can be imple-

mented in real-time. In Chapter 8 it is shown how the assumption of each player
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winning a point on serve being identically distributed can be relaxed in a Markov

process, and a revised Markov chain model is presented that better reflects the

data. In Chapter 9, the methods and results obtained throughout the thesis are

applied to solving some defence strategy problems. In Chapter 10, a summary of

the findings of this thesis and further research are covered.



Chapter 2

MARKOV CHAIN MODEL

2.1 Introduction

It is well documented (Kemeny and Snell [41], Fischer [25], Carter and Crews [11],

Schutz [69] and Morris [50]) that a game of tennis can be modelled as a Markov

chain with the assumption that the player on serve has a constant probability

of winning a point. Morris [50] formulates backwards recurrence formulas with

boundary conditions for a game of tennis. It follows that a set of tennis based

on the probability of winning a game, and a match based on the probability of

winning a set, can also be modelled separately as Markov processes, given that

each player has a separate probability of winning a point on serve.

In this chapter the appropriate recurrence formulas with boundary conditions

are developed to calculate the conditional probabilities of winning a game, prob-

abilities of reaching various score lines within a game from any position in the

game, and the mean and variance of the number of points remaining in the game

conditional on the point score. These formulas can then be implemented effec-

tively on spreadsheets and examples are given. A more flexible notation is then

introduced to allow, for example, which player is currently serving, whether a reg-

ular or tiebreaker game is being played and whether the mean number of games

13
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in a set or match is being calculated. With this notation, similar formulas are

developed for a tiebreaker game in points, advantage and tiebreaker set in games,

and for a tiebreaker and advantage match in sets, to calculate probabilities and

mean lengths together with the associated variances. It is also demonstrated how

the Markov chain model can be applied to other racket sports.

The model considered in this chapter uses the i.i.d. assumption for the prob-

ability of each player winning a point on serve throughout a game, set or match.

However the identically distributed assumption can be relaxed in a Markov pro-

cess and a revised Markov chain model using only the independence assumption

is formulated in Chapter 8, which better reflects what actually occurs in profes-

sional tennis matches.

2.2 Modelling a game

The scoring structure of a game of tennis is defined as follows. Both players start

the game with no score, known as “love-all”. The first point scored by each player

is referred to as 15, the second point 30 and the third point is referred to as 40.

The first player to reach 4 points and be ahead by at least 2 points wins the game.

If the point score reaches 40-40 (known as “deuce”), then the game continues

indefinitely until one player is two points ahead, and wins the game. The same

person is serving throughout an entire game. Following a score of “deuce”, if the

server is one point ahead, the score is referred to as “advantage-server”, and if

the server is one point behind, the score is referred to as “advantage-receiver”.

For the purpose of modelling a game it is more convenient to refer to the score

in terms of the points won by each player (thus 40-30 becomes (3,2)).
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2.2.1 Conditional probabilities of winning a game

A Markov chain model of a game for two players, A and B, is set up where the

state of the game is the current point score (a, b), where both a ≥ 0 and b ≥ 0.

With probability p the state changes from (a, b) to (a+1, b) and with probability

1 − p it changes from (a, b) to (a, b + 1). Therefore the probability P (a, b) that

player A wins the game when the point score is (a, b), is given by:

P (a, b) = pP (a + 1, b) + (1− p)P (a, b + 1)

where: p is the probability of player A winning a point.

The boundary values are P (a, b) = 1 if a = 4, b ≤ 2, P (a, b) = 0 if b = 4, a ≤ 2.

Haigh [30] solves the problem at deuce as follows: with probability p2, player A

wins both points and the game, with probability (1 − p)2, player A loses both

points and loses the game, and with probability 2p(1 − p), player A is back at

deuce. Therefore the probability of player A winning from deuce is given by:

P (3, 3) = p2 + 2p(1− p)P (3, 3).

Solving this equation for P (3, 3) gives p2

1−2p(1−p)
which can be represented by:

P (3, 3) =
p2

p2 + (1− p)2

The boundary values and formulas can be entered on spreadsheets. Table 2.1

shows the results obtained, given p = 0.60. It indicates that a player with a 0.60

probability of winning a point has a 0.74 probability of winning the game.

Theorem 2.2.1. The probability of player B winning the game is one minus the

probability of player A winning the game.
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B score
0 15 30 40 game

0 0.74 0.58 0.37 0.15 0
15 0.84 0.71 0.52 0.25 0

A score 30 0.93 0.85 0.69 0.42 0
40 0.98 0.95 0.88 0.69

game 1 1 1

Table 2.1: The conditional probabilities of player A winning the game from var-
ious score lines for p = 0.60

Proof. Since there are only two outcomes at each point in the game, this follows

according to the axioms for probability theory.

Theorem 2.2.2. A player has the same probability of winning a game from

advantage server as they do from 40-30.

Proof. In both cases, if the server wins the next point they win the game and if

they lose the next point the score is back at deuce.

Theorem 2.2.3. A player has the same probability of winning a game from

advantage receiver as they do from 30-40.

Proof. In both cases, if the server loses the next point they lose the game and if

they win the next point the score is back at deuce.

Theorem 2.2.4. A player has the same probability of winning a game from deuce

as they do from 30-30.

Proof. At 30-30 if the server wins the next point the score goes to 40-30. At

deuce if the server wins the next point the score goes to advantage server. From

Theorem 2.2.2 advantage server is equivalent to 40-30. At 30-30 if the server loses

the next point the score goes to 30-40. At deuce if the server loses the next point
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the score goes to advantage receiver. From Theorem 2.2.3 advantage receiver is

equivalent to 30-40.

One of the advantages of using recurrence formulas in spreadsheets for mod-

elling tennis is the flexibility to alter a player’s probability of winning a point at

a particular state of the game. For example suppose at 30-30, player A has an

extra 0.02 probability of winning the next point, then the recurrence formula at

30-30 becomes: P (a, b) = (p + 0.02)P (a + 1, b) + (1− p− 0.02)P (a, b + 1). For a

Markov process, p does not need to be identically distributed, but the assumption

of independence must hold.

2.2.2 Mean number of points remaining in a game

If M(a, b) is the mean number of points remaining in the game at point score (a, b)

for player A, the backwards recurrence formula as calculated from Equation 1.3.2

becomes: M(a, b) = p[1 + M(a + 1, b)] + (1− p)[1 + M(a, b + 1)]. This equation

simplifies to:

M(a, b) = 1 + pM(a + 1, b) + (1− p)M(a, b + 1)

The boundary values are M(a, b) = 0 if b = 4, a ≤ 2 or a = 4, b ≤ 2. The

formula for the mean number of points remaining from deuce is calculated from

the relation M(3, 3) = 2[p2 + (1− p)2] + 2p(1− p)[2 + M(3, 3)], which simplifies

to:

M(3, 3) =
2

p2 + (1− p)2

Table 2.2 lists the mean number of points remaining in a game with p = 0.60.

It indicates that the expected number of points to be played in such a game is
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6.5.

B score
0 15 30 40 game

0 6.5 6.0 4.8 2.8 0
15 5.2 5.0 4.5 3.0 0

A score 30 3.6 3.7 3.8 3.3 0
40 1.8 2.0 2.5 3.8

game 0 0 0

Table 2.2: The mean number of points remaining in a game from various score
lines with p = 0.60

2.2.3 Variance of the number of points remaining in a

game

If V (a, b) is the variance of the number of points remaining in the game at point

score (a, b) for player A, the backwards recurrence formula as calculated from

Equation 1.3.3 becomes:

V (a, b) = pV (a + 1, b) + (1− p)V (a, b + 1) + p(1− p)[M(a + 1, b)−M(a, b + 1)]2

The boundary values are V (a, b) = 0 if b = 4, a ≤ 2 or a = 4, b ≤ 2.

The following analysis is used to calculate the variance of the number of points

remaining in a game from deuce.

If X is a random variable of the number of points remaining in a game from

deuce, then the probability distribution is given by:

P (X = 2n) = [p2 + (1− p)2][2p(1− p)]n−1, n = 1, 2, 3, ....

This is a geometric distribution, where the probability of a success on the first

trial is given by p2 + (1− p)2, and this occurs after two points have been played.
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Therefore, M(3, 3) = 2
p2+(1−p)2

, which agrees with a prior result, and V (3, 3)

becomes:

V (3, 3) =
8p(1− p)

[p2 + (1− p)2]2

Table 2.3 lists the variance of the number of points remaining in a game from

point score (a, b) with p = 0.60. It indicates that the variance of the number of

points played in such a game is 6.7.

B score
0 15 30 40 game

0 6.7 7.2 7.7 6.5 0
15 6.2 6.7 7.4 7.3 0

A score 30 4.9 6.1 7.1 7.8 0
40 2.6 4.1 6.4 7.1

game 0 0 0

Table 2.3: The variance of the number of points remaining in a game from various
score lines with p = 0.60

2.2.4 Probabilities of reaching score lines within a game

Let N(a, b|g, h) be the probability of reaching a point score (a, b) in a game from

point score (g, h) for player A. The forward recurrence formulas are:

N(a, b|g, h) = pN(a− 1, b|g, h), for a = 4, 0 ≤ b ≤ 2 or b = 0, 0 ≤ a ≤ 4

N(a, b|g, h) = (1− p)N(a, b− 1|g, h), for b = 4, 0 ≤ a ≤ 2 or a = 0, 0 ≤ b ≤ 4

N(a, b|g, h) = pN(a− 1, b|g, h) + (1− p)N(a, b− 1|g, h), for 1 ≤ a ≤ 3, 1 ≤ b ≤ 3

The boundary value is N(a, b|g, h) = 1 if a = g and b = h.

For cases where a ≥ 3, b ≥ 3, 0 ≤ g ≤ 3 and 0 ≤ h ≤ 3, the following formulas

are applied for n ≥ 0:
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N(3 + n, 3 + n|g, h) = N(3, 3|g, h)[2p(1− p)]n

N(4 + n, 3 + n|g, h) = N(3, 3|g, h)p[2p(1− p)]n

N(5 + n, 3 + n|g, h) = N(3, 3|g, h)p2[2p(1− p)]n

N(3 + n, 4 + n|g, h) = N(3, 3|g, h)(1− p)[2p(1− p)]n

N(3 + n, 5 + n|g, h) = N(3, 3|g, h)(1− p)2[2p(1− p)]n

Table 2.4 lists the probability of reaching various score lines in a game given

g = 0, h = 0 with p = 0.60. It indicates that the probability of reaching deuce in

such a game from g = 0, h = 0 is 0.28.

B score
0 15 30 40 game

0 1 0.40 0.16 0.06 0.03
15 0.60 0.48 0.29 0.15 0.06

A score 30 0.36 0.43 0.35 0.23 0.09
40 0.22 0.35 0.35 0.28

game 0.13 0.21 0.21

Table 2.4: The probability of reaching various score lines in a game from g = 0,
h = 0 with p = 0.60

2.2.5 Notation

We often need to distinguish which player is serving. Let pA and pB represent

the probability of whether player A or player B is winning a point on their

respective serves. A tennis match consists of four levels - (points, games, sets,

match). In some circumstances we may be referring to points in a game, and

other circumstances points in a set. It becomes necessary to represent

points in a game as pg,

points in a set as ps,

points in a match as pm,
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games in a set as gs,

games in a match as gm and

sets in a match as sm.

It follows from this notation that P pg
A (a, b) and P pg

B (a, b) represent the condi-

tional probabilities of player A winning a game from point score (a, b) for player

A and B serving respectively.

2.3 Modelling a tiebreaker game

The scoring structure of a tiebreaker game of tennis is defined as follows. The

first player to reach 7 points and be ahead by at least 2 points wins the game.

If the point score reaches 6 points-all, then the game continues indefinitely until

one player is two points ahead, and wins the game. One player serves the first

point, and then the players alternate serving every two points.

It becomes necessary to differentiate between a regular game and a tiebreaker

game. We do this by representing a tiebreaker game with T , such that P
pg

T
A (a, b)

and P
pg

T
B (a, b) represent the conditional probabilities of player A winning a tiebreaker

game from point score (a, b) for player A and B serving respectively. To model a

tiebreaker game, two separate spreadsheets are now required, one for each player

serving. The equations that follow for modelling a tiebreaker game are those for

player A serving. Similar formulas can be produced for player B serving.

2.3.1 Conditional probabilities of winning a tiebreaker game

P
pg

T
A (a, b) = pAP

pg
T

B (a + 1, b) + (1− pA)P
pg

T
B (a, b + 1), if (a + b) mod 2 = 0

P
pg

T
A (a, b) = pAP

pg
T

A (a + 1, b) + (1− pA)P
pg

T
A (a, b + 1), if (a + b) mod 2 6= 0
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Boundary values: P
pg

T
A (a, b) = 1 if a = 7, 0 ≤ b ≤ 5, P

pg
T

A (a, b) = 0 if b = 7,

0 ≤ a ≤ 5. The formula for the probability of player A winning the tiebreaker

game from (6, 6) is calculated from the equation P
pg

T
A (6, 6) = pA(1 − pB) +

P
pg

T
A (6, 6)[pApB + (1− pA)(1− pB)], which simplifies to:

P
pg

T
A (6, 6) =

pA(1− pB)

pA(1− pB) + (1− pA)pB

Tables 2.5 and 2.6 show the conditional probabilities of player A winning the

game, given pA = 0.62 and pB = 0.60. It indicates that player A has a 0.53

probability of winning the tiebreaker game for player A or B serving.

Theorem 2.3.1. A player has the same probability of winning a tiebreaker game

from all points (n, n), n ≥ 5.

Proof. From (n, n), n ≥ 5, a player always has to win the next two points to win

the game, and one of the two points is on his own serve and the other point is

on his opponent’s serve.

Theorem 2.3.2. If player A is serving, he has the same probability of winning

a tiebreaker game from all points (n + 1, n), n ≥ 5.

Proof. If the server A wins the next point from (n + 1, n), n ≥ 5, he wins the

game. If the server A loses the next point from (n + 1, n), n ≥ 5, the score is

(n+1, n+1). From Theorem 2.3.1, a player has the same probability of winning

a tiebreaker game from all points (n, n), n ≥ 5, or equivalently (n + 1, n + 1),

n ≥ 4.

Theorem 2.3.3. If player A is serving, he has the same probability of winning

a tiebreaker game from all points (n, n + 1), n ≥ 5.

Proof. The proof is obtained similarly to Theorem 2.3.2.
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B score
0 1 2 3 4 5 6 7

0 0.53 0.44 0.29 0.20 0.10 0.04 0.01 0
1 0.67 0.53 0.43 0.27 0.17 0.07 0.02 0
2 0.76 0.68 0.53 0.42 0.24 0.13 0.03 0

A score 3 0.87 0.77 0.69 0.53 0.40 0.20 0.08 0
4 0.93 0.89 0.80 0.72 0.52 0.37 0.13 0
5 0.98 0.95 0.92 0.83 0.75 0.52 0.32 0
6 0.99 0.99 0.98 0.96 0.89 0.82 0.52
7 1 1 1 1 1 1

Table 2.5: The conditional probabilities of player A winning the tiebreaker game
from various score lines for pA = 0.62 and pB = 0.60, and player A serving

B score
0 1 2 3 4 5 6 7

0 0.53 0.39 0.29 0.17 0.10 0.03 0.01 0
1 0.62 0.53 0.37 0.27 0.14 0.07 0.01 0
2 0.76 0.63 0.53 0.35 0.24 0.10 0.03 0

A score 3 0.83 0.77 0.63 0.53 0.33 0.20 0.05 0
4 0.93 0.86 0.80 0.65 0.52 0.29 0.13 0
5 0.97 0.95 0.89 0.83 0.67 0.52 0.21 0
6 0.99 0.99 0.98 0.93 0.89 0.71 0.52
7 1 1 1 1 1 1

Table 2.6: The conditional probabilities of player A winning the tiebreaker game
from various score lines for pA = 0.62 and pB = 0.60, and player B serving

2.3.2 Mean number of points remaining in a tiebreaker

game

Let M
pg

T
A (a, b) represent the mean number of points remaining in a tiebreaker

game for player A from point score (a, b) with player A serving.

M
pg

T
A (a, b) = 1 + pAM

pg
T

B (a + 1, b) + (1− pA)M
pg

T
B (a, b + 1), if (a + b) mod 2 = 0

M
pg

T
A (a, b) = 1 + pAM

pg
T

A (a + 1, b) + (1− pA)M
pg

T
A (a, b + 1), if (a + b) mod 2 6= 0

Boundary values: M
pg

T
A (a, b) = 0 if a = 7, 0 ≤ b ≤ 5, or b = 7, 0 ≤ a ≤ 5. The



24

formula for the mean number of points remaining in a tiebreaker game from (6, 6)

can be calculated using the same techniques as described for a regular game, and

represented as:

M
pg

T
A (6, 6) =

2

pA(1− pB) + (1− pA)pB

2.3.3 Variance of the number of points remaining in a

tiebreaker game

Let V
pg

T
A (a, b) represent the variance of the number of points remaining in a

tiebreaker game for player A from point score (a, b) with player A serving.

V
pg

T
A (a, b) = pAV

pg
T

B (a + 1, b) + (1− pA)V
pg

T
B (a, b + 1)+

pA(1− pA)[M
pg

T
B (a + 1, b)−M

pg
T

B (a, b + 1)]2, if (a + b) mod 2 = 0

V
pg

T
A (a, b) = pAV

pg
T

A (a + 1, b) + (1− pA)V
pg

T
A (a, b + 1)+

pA(1− pA)[M
pg

T
A (a + 1, b)−M

pg
T

A (a, b + 1)]2, if (a + b) mod 2 6= 0

Boundary values: V
pg

T
A (a, b) = 0 if a = 7, 0 ≤ b ≤ 5 or b = 7, 0 ≤ a ≤ 5. The

formula for the variance of the number of points remaining in a tiebreaker game

from (6, 6) can be calculated using the same techniques as described for a regular

game, and represented as:

V
pg

T
A (6, 6) =

4[pApB + (1− pA)(1− pB)]

[pA(1− pB) + (1− pA)pB]2
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2.3.4 Probabilities of reaching score lines within a tiebreaker

game

Let N
pg

T
A (a, b|g, h) represent the probabilities for player A of reaching a point

score (a, b) in a tiebreaker game from point score (g, h) for player A serving at

(a, b).

N
pg

T
A (a, b|g, h) = (1−pB)N

pg
T

B (a−1, b|g, h), if (a+b) mod 2 6= 0 and either a = 7,

0 ≤ b ≤ 6 or b = 0, 0 ≤ a ≤ 6

N
pg

T
A (a, b|g, h) = pAN

pg
T

A (a − 1, b|g, h), if (a + b) mod 2 = 0 and either a = 7,

0 ≤ b ≤ 6 or b = 0, 0 ≤ a ≤ 6

N
pg

T
A (a, b|g, h) = pBN

pg
T

B (a, b−1|g, h), if (a+ b) mod 2 6= 0 and either 0 ≤ a ≤ 6,

b = 7 or a = 0, 0 ≤ b ≤ 6

N
pg

T
A (a, b|g, h) = (1 − pA)N

pg
T

A (a, b − 1|g, h), if (a + b) mod 2 = 0 and either

0 ≤ a ≤ 6, b = 7 or a = 0, 0 ≤ b ≤ 6

N
pg

T
A (a, b|g, h) = (1−pB)N

pg
T

B (a−1, b|g, h)+pBN
pg

T
B (a, b−1|g, h), if (a+ b) mod

2 6= 0, 1 ≤ a ≤ 6, 1 ≤ b ≤ 6

N
pg

T
A (a, b|g, h) = pAN

pg
T

A (a−1, b|g, h)+(1−pA)N
pg

T
A (a, b−1|g, h), if (a+ b) mod

2 = 0, 1 ≤ a ≤ 6, 1 ≤ b ≤ 6

Boundary value: N
pg

T
A (a, b|g, h) = 1 if a = g and b = h.

For cases where a ≥ 6, b ≥ 6, 0 ≤ g ≤ 6 and 0 ≤ h ≤ 6, the following formulas

are applied for n ≥ 0:

N
pg

T
A (6 + n, 6 + n|g, h) = N

pg
T

A (6, 6|g, h)[pApB + (1− pA)(1− pB)]n, if n mod 2 =

0

N
pg

T
A (6 + n, 6 + n|g, h) = N

pg
T

B (6, 6|g, h)[pApB + (1 − pA)(1 − pB)]n, if n mod 2

6= 0
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N
pg

T
A (7 + n, 6 + n|g, h) = N

pg
T

B (6, 6|g, h)(1− pB)[pApB + (1− pA)(1− pB)]n, if n

mod 2 = 0

N
pg

T
A (7 + n, 6 + n|g, h) = N

pg
T

A (6, 6|g, h)(1− pB)[pApB + (1− pA)(1− pB)]n, if n

mod 2 6= 0

N
pg

T
A (8 + n, 6 + n|g, h) = N

pg
T

B (6, 6|g, h)pA(1− pB)[pApB + (1− pA)(1− pB)]n, if

n mod 2 = 0

N
pg

T
A (8 + n, 6 + n|g, h) = N

pg
T

A (6, 6|g, h)pA(1− pB)[pApB + (1− pA)(1− pB)]n, if

n mod 2 6= 0

N
pg

T
A (6 + n, 7 + n|g, h) = N

pg
T

B (6, 6|g, h)pB[pApB + (1 − pA)(1 − pB)]n, if n mod

2 = 0

N
pg

T
A (6 + n, 7 + n|g, h) = N

pg
T

A (6, 6|g, h)pB[pApB + (1 − pA)(1 − pB)]n, if n mod

2 6= 0

N
pg

T
A (6 + n, 8 + n|g, h) = N

pg
T

B (6, 6|g, h)(1− pA)pB[pApB + (1− pA)(1− pB)]n, if

n mod 2 = 0

N
pg

T
A (6 + n, 8 + n|g, h) = N

pg
T

A (6, 6|g, h)(1− pA)pB[pApB + (1− pA)(1− pB)]n, if

n mod 2 6= 0

Tables 2.7 and 2.8 list the probability of reaching various score lines in a

tiebreaker game given g = 0, h = 0 with pA = 0.62 and pB = 0.60. It indicates

that the probability of reaching 7 points-all in a tiebreaker game is given by 0.12

for player A or B serving.

2.4 Modelling a set

The scoring structure of a tiebreaker set of tennis is defined as follows. The first

player to reach 6 regular games and be ahead by at least 2 regular games wins

the set. If the game score reaches 6 games-all, then a tiebreaker game is played



27

B score
0 1 2 3 4 5 6 7

0 1 0.60 0.23 0.14 0.05 0.03 0.01 0.01
1 0.40 0.52 0.41 0.24 0.16 0.08 0.05 0.02
2 0.25 0.36 0.39 0.33 0.23 0.17 0.10 0.06

A score 3 0.10 0.26 0.31 0.32 0.28 0.21 0.17 0.06
4 0.06 0.14 0.25 0.28 0.28 0.25 0.20 0.12
5 0.02 0.10 0.16 0.23 0.25 0.25 0.23 0.09
6 0.02 0.05 0.12 0.16 0.22 0.23 0.23 0.14
7 0.01 0.03 0.05 0.10 0.09 0.14 0.09 0.12

Table 2.7: The probability of reaching various score lines in a tiebreaker game
from g = 0, h = 0 with pA = 0.62 and pB = 0.60, for player A serving

B score
0 1 2 3 4 5 6 7

0 1 0.38 0.23 0.09 0.05 0.02 0.01 0.00
1 0.62 0.52 0.34 0.24 0.12 0.08 0.04 0.02
2 0.25 0.42 0.39 0.30 0.23 0.14 0.10 0.04

A score 3 0.15 0.26 0.34 0.32 0.26 0.21 0.14 0.08
4 0.06 0.18 0.25 0.29 0.28 0.24 0.20 0.08
5 0.04 0.10 0.19 0.23 0.26 0.25 0.22 0.13
6 0.02 0.07 0.12 0.19 0.22 0.24 0.23 0.09
7 0.01 0.03 0.07 0.07 0.13 0.10 0.14 0.12

Table 2.8: The probability of reaching various score lines in a tiebreaker game
from g = 0, h = 0 with pA = 0.62 and pB = 0.60, for player B serving

to decide the set. Players alternate service each game. At 6 games-all, the player

receiving in the prior game, serves the first point of the tiebreaker game.

The scoring structure of an advantage set of tennis is defined as follows. The

first player to reach 6 regular games and be ahead by at least 2 regular games wins

the set. If the set score reaches 5 games-all, then the set continues indefinitely

until one player is two games ahead, and wins the set. Players alternate service

each game.

Let pg
A and pg

B represent the probability of player A and player B winning
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a regular game on serve respectively. It follows that p
g

T
A and p

g
T

B represent the

probability of player A and player B winning a tiebreaker game on serve respec-

tively.

2.4.1 Conditional probabilities of winning a set

Let P
gs

T
A (c, d) represent the conditional probabilities of player A winning a tiebreaker

set from game score (c, d) for player A serving. Let P gs
A (c, d) represent the condi-

tional probabilities of player A winning an advantage set from game score (c, d)

for player A serving.

For a tiebreaker set:

P
gs

T
A (c, d) = pg

AP
gs

T
B (c + 1, d) + (1− pg

A)P
gs

T
B (c, d + 1)

The boundary values are P
gs

T
A (c, d) = 1 if c = 6, 0 ≤ d ≤ 4 or c = 7, d = 5,

P
gs

T
A (c, d) = 0 if d = 6, 0 ≤ c ≤ 4 or c = 5, d = 7, P

gs
T

A (6, 6) = p
g

T
A .

For an advantage set:

P gs
A (c, d) = pg

AP gs
B (c + 1, d) + (1− pg

A)P gs
B (c, d + 1)

Boundary values: P gs
A (c, d) = 1 if c = 6, 0 ≤ d ≤ 4, P gs

A (c, d) = 0 if d = 6,

0 ≤ c ≤ 4, P gs
A (5, 5) =

pg
A(1−pg

B)

pg
A(1−pg

B)+(1−pg
A)pg

B
.

Tables 2.9 and 2.10 show the conditional probabilities of player A winning the

advantage set, given pA = 0.62 and pB = 0.60. It indicates that player A has a

0.57 probability of winning the set for player A or B serving.

Theorem 2.4.1. A player has the same probability of winning an advantage set

from all games (n, n), n ≥ 4. If player A is serving, he has the same probability
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B score
0 1 2 3 4 5 6

0 0.57 0.50 0.27 0.19 0.05 0.02 0
1 0.77 0.57 0.49 0.23 0.15 0.02 0
2 0.83 0.78 0.56 0.47 0.19 0.09 0

A score 3 0.94 0.85 0.81 0.56 0.46 0.11 0
4 0.97 0.96 0.88 0.84 0.55 0.43 0
5 1.00 0.99 0.98 0.93 0.90 0.55
6 1 1 1 1 1

Table 2.9: The conditional probabilities of player A winning the advantage set
from various score lines for pA = 0.62 and pB = 0.60, and player A serving

B score
0 1 2 3 4 5 6

0 0.57 0.35 0.27 0.10 0.05 0.01 0
1 0.64 0.57 0.32 0.23 0.07 0.02 0
2 0.83 0.64 0.56 0.28 0.19 0.03 0

A score 3 0.88 0.85 0.64 0.56 0.23 0.11 0
4 0.97 0.91 0.88 0.65 0.55 0.15 0
5 0.99 0.99 0.95 0.93 0.67 0.55
6 1 1 1 1 1

Table 2.10: The conditional probabilities of player A winning the advantage set
from various score lines for pA = 0.62 and pB = 0.60, and player B serving

of winning an advantage set from all games (n + 1, n), n ≥ 4. If player A is

serving, he has the same probability of winning an advantage set from all games

(n, n + 1), n ≥ 4.

Proof. The proofs for these theorems are similar to the proofs obtained for The-

orems 2.3.1 and 2.3.2.

2.4.2 Mean number of games remaining in a set

Let M
gs

T
A (c, d) represent the mean number of games remaining in a tiebreaker set

for player A from game score (c, d) with player A serving in the set. Let M gs
A (c, d)
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represent the mean number of games remaining in an advantage set for player A

from game score (c, d) with player A serving in the set.

For a tiebreaker set:

M
gs

T
A (c, d) = 1 + pg

AM
gs

T
B (c + 1, d) + (1− pg

A)M
gs

T
B (c, d + 1)

Boundary values: M
gs

T
A (c, d) = 0 if c = 6, 0 ≤ d ≤ 4 or d = 6, 0 ≤ c ≤ 4 or

c = 7, d = 5 or c = 5, d = 7, M
gs

T
A (6, 6) = 1. (The simplification of the boundary

condition at (6, 6) arises since there is only one game to be played).

For an advantage set:

M gs
A (c, d) = 1 + pg

AM gs
B (c + 1, d) + (1− pg

A)M gs
B (c, d + 1)

Boundary values: M gs
A (c, d) = 0 if c = 6, 0 ≤ d ≤ 4 or d = 6, 0 ≤ c ≤ 4,

M gs
A (5, 5) = 2

pg
A(1−pg

B)+(1−pg
A)pg

B
.

2.4.3 Variance of the number of games remaining in a set

Let V
gs

T
A (c, d) represent the variance of the number of games remaining in a

tiebreaker set for player A from game score (c, d) with player A serving in the

set. Let V gs
A (c, d) represent the variance of the number of games remaining in an

advantage set for player A from game score (c, d) with player A serving in the

set.

For a tiebreaker set:

V
gs

T
A (c, d) = pg

AV
gs

T
B (c + 1, d) + (1− pg

A)V
gs

T
B (c, d + 1)+

pg
A(1− pg

A)[M
gs

T
B (c + 1, d)−M

gs
T

B (c, d + 1)]2
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Boundary Values: V
gs

T
A (c, d) = 0 if c = 6, 0 ≤ d ≤ 4 or d = 6, 0 ≤ c ≤ 4 or

c = 7, d = 5 or c = 5, d = 7 or c = 6, d = 6.

For an advantage set:

V gs
A (c, d) = pg

AV gs
B (c + 1, d) + (1− pg

A)V gs
B (c, d + 1)+

pg
A(1− pg

A)[M gs
B (c + 1, d)−M gs

B (c, d + 1)]2

Boundary values: V gs
A (c, d) = 0 if c = 6, 0 ≤ d ≤ 4 or d = 6, 0 ≤ c ≤ 4,

V gs
A (5, 5) =

4[pg
Apg

B+(1−pg
A)(1−pg

B)]

[pg
A(1−pg

B)+(1−pg
A)pg

B ]2
.

2.4.4 Probabilities of reaching score lines within a set

Let N
gs

T
A (c, d|i, j) represent the probabilities for player A of reaching a game

score (c, d) in a tiebreaker set from game score (i, j) for player A serving at (c, d).

Let N gs
A (c, d|i, j) represent the probabilities for player A of reaching a game score

(c, d) in an advantage set from game score (i, j) for player A serving at (c, d).

For a tiebreaker set:

N
gs

T
A (c, d|i, j) = (1− pg

B)N
gs

T
B (c− 1, d|i, j), if c = 6, 0 ≤ d ≤ 5 or c = 7, d = 5 or

d = 0, 0 ≤ c ≤ 5

N
gs

T
A (c, d|i, j) = pg

BN
gs

T
B (c, d− 1|i, j), if d = 6, 0 ≤ c ≤ 5 or d = 7, c = 5 or c = 0,

0 ≤ d ≤ 5

N
gs

T
A (c, d|i, j) = (1 − pg

B)N
gs

T
B (c − 1, d|i, j) + pg

BN
gs

T
B (c, d − 1|i, j), if 1 ≤ c ≤ 5,

1 ≤ d ≤ 5

N
gs

T
A (c, d|i, j) = (1− p

g
T

B )N
gs

T
B (c− 1, d|i, j), if (c, d) = (7, 6)

N
gs

T
A (c, d|i, j) = p

g
T

B N
gs

T
B (c, d− 1|i, j), if (c, d) = (6, 7)

Boundary values: N
gs

T
A (c, d|i, j) = 1 if c = i and d = j.
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For an advantage set:

N gs
A (c, d|i, j) = (1− pg

B)N gs
B (c− 1, d|i, j), if c = 6, 0 ≤ d ≤ 5 or d = 0, 0 ≤ c ≤ 5

N gs
A (c, d|i, j) = pg

BN gs
B (c, d− 1|i, j), if d = 6, 0 ≤ c ≤ 5 or c = 0, 0 ≤ d ≤ 5

N gs
A (c, d|i, j) = (1 − pg

B)N gs
B (c − 1, d|i, j) + pg

BN gs
B (c, d − 1|i, j), if 1 ≤ c ≤ 5,

1 ≤ d ≤ 5

Boundary values: N gs
A (c, d|i, j) = 1 if c = i and d = j.

For cases where c ≥ 5, d ≥ 5, 0 ≤ i ≤ 5 and 0 ≤ j ≤ 5, the following formulas

are applied for n ≥ 0:

N gs
A (5 + n, 5 + n|i, j) = N gs

A (5, 5|i, j)[pg
Apg

B + (1− pg
A)(1− pg

B)]n

N gs
A (6 + n, 5 + n|i, j) = N gs

B (5, 5|i, j)(1− pg
B)[pg

Apg
B + (1− pg

A)(1− pg
B)]n

N gs
A (7 + n, 5 + n|i, j) = N gs

A (5, 5|i, j)pg
A(1− pg

B)[pg
Apg

B + (1− pg
A)(1− pg

B)]n

N gs
A (5 + n, 6 + n|i, j) = N gs

B (5, 5|i, j)pg
B[pg

Apg
B + (1− pg

A)(1− pg
B)]n

N gs
A (5 + n, 7 + n|i, j) = N gs

A (5, 5|i, j)(1− pg
A)pg

B[pg
Apg

B + (1− pg
A)(1− pg

B)]n

Tables 2.11 and 2.12 list the probability of reaching various score lines in a

tiebreaker or advantage set given i = 0, j = 0 with pA = 0.62 and pB = 0.60. It

indicates that the probability of reaching a tiebreaker game in a tiebreaker set or

6 games-all in an advantage set is given by 0.18 for player A or B serving.

2.5 Modelling a match

The scoring structure of a tiebreaker match of tennis is defined as follows. For a

best-of-5 set tiebreaker match, the first player to reach 3 tiebreaker sets wins the

match. For a best-of-3 set tiebreaker match, the first player to reach 2 tiebreaker

sets wins the match. Usually the toss of a coin decides who will be serving the
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B score
0 1 2 3 4 5 6

0 1 0.74 0.16 0.12 0.03 0.02 0.00
1 0.26 0.63 0.51 0.21 0.16 0.05 0.04
2 0.21 0.32 0.46 0.40 0.21 0.17 0.06

A score 3 0.05 0.26 0.31 0.38 0.33 0.21 0.15
4 0.04 0.10 0.26 0.29 0.33 0.29 0.17
5 0.01 0.08 0.13 0.26 0.28 0.29 0.21
6 0.01 0.02 0.06 0.07 0.08 0.08 0.18

Table 2.11: The probability of reaching various score lines in a set from i = 0,
j = 0 with pA = 0.62 and pB = 0.60, for player A serving

B score
0 1 2 3 4 5 6

0 1 0.22 0.16 0.04 0.03 0.01 0.00
1 0.78 0.63 0.27 0.21 0.07 0.05 0.01
2 0.21 0.53 0.46 0.27 0.21 0.09 0.04

A score 3 0.16 0.26 0.42 0.38 0.25 0.21 0.05
4 0.04 0.21 0.26 0.35 0.33 0.23 0.07
5 0.03 0.08 0.22 0.26 0.31 0.29 0.07
6 0.01 0.06 0.10 0.20 0.21 0.23 0.18

Table 2.12: The probability of reaching various score lines in a set from i = 0,
j = 0 with pA = 0.62 and pB = 0.60, for player B serving

first game of the match. The server for the first game in the other sets will be

the player who was receiving the last game in the prior set. If a set finishes with

a tiebreaker game, then the player that served first in that set, will be receiving

for the first game in the next set.

The scoring structure of an advantage match of tennis is defined as follows. For

a best-of-5 set advantage match, the first player to reach 3 sets wins the match.

The first 4 sets are tiebreaker sets and the 5th set is played as an advantage

set. For a best-of-3 set advantage match, the first player to reach 2 sets wins

the match. The first 2 sets are tiebreaker sets and the 3rd set is played as an

advantage set. The serving is defined the same as a tiebreaker match.
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By default a tiebreaker match will represent a best-of-5 set tiebreaker match,

and an advantage match will represent a best-of-5 set advantage match. The

notation used for a best-of-3 set tiebreaker and advantage match is defined later

in the chapter.

Let ps
A and ps

B represent the probabilities of players A and B respectively

winning an advantage set by serving the first game in the set. It follows that

p
s
T

A and p
s
T

B represent the probabilities of players A and B respectively winning

a tiebreaker set by serving the first game in the set. Let pm
A and pm

B respectively

represent the probabilities of players A and B winning an advantage match by

serving the first game in the match. It follows that p
m

T
A and p

m
T

B respectively

represent the probabilities of players A and B winning a tiebreaker match by

serving the first game in the match.

2.5.1 Conditional probabilities of winning a match

Let P sm
A (e, f) represent the conditional probabilities of player A winning an ad-

vantage match from set score (e, f) by player A serving the first game in the

match. Let P
sm

T
A (e, f) represent the conditional probabilities of player A win-

ning a tiebreaker match from set score (e, f) by player A serving the first game

in the match.

Theorem 2.5.1. There is no advantage in serving first in a tiebreaker game,

advantage set or tiebreaker set. That is:

p
g

T
A = 1− p

g
T

B

ps
A = 1− ps

B

p
s
T

A = 1− p
s
T

B

Proof. Theorem 2.3.1 states that a player has the same probability of winning

a tiebreaker game from all points (n, n), n ≥ 5. Using backwards recursion two
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points at a time it can be shown that P
pg

T
A (a, b) = P

pg
T

B (a, b), for a + b: even.

This result can be observed from Tables 2.5 and 2.6. This includes state (0, 0),

which gives the result P
pg

T
A (0, 0) = P

pg
T

B (0, 0), or equivalently p
g

T
A = 1 − p

g
T

B .

Similar arguments can be used to show ps
A = 1 − ps

B and p
s
T

A = 1 − p
s
T

B . These

results can be formally proved by using a mathematical software package such as

Mathematica.

Theorem 2.5.1 has also been proven in MacPhee et al. [45].

Corollary 2.5.2. P sm
A (e, f) = P sm

B (e, f), P
sm

T
A (e, f) = P

sm
T

B (e, f)

Proof. This follows from Theorem 2.5.1 since there is no advantage in serving

first in a set.

When (e, f) = (0, 0), the following is obtained:

pm
A = 1− pm

B

p
m

T
A = 1− p

m
T

B

Since these probabilities are independent of who serves first, it becomes con-

venient to let pg
T , ps, ps

T , pm and pm
T represent the probabilities of player A

winning a tiebreaker game, advantage set, tiebreaker set, advantage match and

tiebreaker match respectively. Also P sm(e, f) and P sm
T (e, f) represent the condi-

tional probabilities of player A winning an advantage and tiebreaker match from

set score (e, f) respectively.

It can also be observed that:

If pA > pB then ps > ps
T and pm > pm

T

For an advantage match, the recurrence formula is represented by:

P sm(e, f) = ps
T P sm(e + 1, f) + (1− ps

T )P sm(e, f + 1)
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Boundary values: P sm(e, f) = 1 if e = 3, f ≤ 2, P sm(e, f) = 0 if f = 3, e ≤ 2,

P sm(2, 2) = ps.

For a tiebreaker match, the recurrence formula is represented by:

P sm
T (e, f) = ps

T P sm
T (e + 1, f) + (1− ps

T )P sm
T (e, f + 1)

Boundary values: P sm
T (e, f) = 1 if e = 3, f ≤ 2, P sm

T (e, f) = 0 if f = 3, e ≤ 2.

Given the probability of a player winning a set, the probabilities of both

players winning the match can be obtained. The probability of a player winning

a set can be obtained from the probabilities of player A winning a game on

both his serve pg
A and his opponent’s serve pg

B, and the probability of winning a

tiebreaker game pg
T (if a tiebreaker set is played). pg

A and pg
B can be obtained

from the probabilities of player A winning a point on both his serve pA and

his opponent’s serve pB, which are essentially the initial two parameters of the

model. By entering pA and pB, and recurrence formulas with boundary conditions

on spreadsheets for a game conditional on the point score, a set conditional on

the game score and a match conditional on the set score, the probabilities of both

players winning the match can be obtained.

When pA = pB, players are of equal strength and the probabilities of either

player winning a set or match is 0.5.

When pA = 1 − pB, there is no advantage in serving, since either player has

the same probability of winning a point regardless of whether they are serving

or receiving. Hence, this becomes a one parameter model, where a player has a

constant probability of winning a point throughout the match. This may apply

to certain matches in women’s tennis, where serving is less dominant than in

men’s tennis.
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Table 2.13 shows the conditional probabilities of player A winning the tiebreaker

match, given pA = 0.62 and pB = 0.60. It indicates that player A has a 0.63 prob-

ability of winning the match. It also shows that a small increase on serve for one

player magnifies throughout the match. When pA = 0.62 and pB = 0.60, this

0.02 increase in probability on serve for player A, magnifies to a 0.07 increase in

probability to win a set, and a 0.13 increase in probability to win the match.

B score
0 1 2 3

0 0.63 0.42 0.18 0
A score 1 0.78 0.60 0.32 0

2 0.92 0.81 0.57 0
3 1 1 1

Table 2.13: The conditional probabilities of player A winning the tiebreaker
match from various score lines for pA = 0.62 and pB = 0.60

When referring to a best-of-3 set match, a 3 is shown as a suffix, such that pm3

and pm
3T represent the probabilities of player A winning a best-of-3 set tiebreaker

and advantage match respectively. Also P sm3 (e, f) and P sm
3T (e, f) represent

the conditional probabilities of player A winning a best-of-3 set advantage and

tiebreaker match from set score (e, f) respectively.

Theorem 2.5.3. A best-of-3 set match is identical to starting a best-of-5 set

match at 1 set-all. That is:

P sm3 (e, f) = P sm(1, 1)

P sm
3T (e, f) = P sm

T (1, 1)

Proof. At 1 set-all in a best-of-5 set match the scores are level and 3 sets remain

to be played. The equivalence to a best-of-3 set match is obvious.
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2.5.2 Mean number of sets remaining in a match

Let M sm
A (e, f) represent the mean number of sets remaining in an advantage

match for player A from set score (e, f) for player A serving the first game in

the match. Let M
sm

T
A (e, f) represent the mean number of sets remaining in a

tiebreaker match for player A from set score (e, f) for player A serving the first

game in the match.

Theorem 2.5.4. M
sm

T
A (e, f) = M

sm
T

B (e, f) = M sm
A (e, f) = M sm

B (e, f)

Proof. The logic of the proof follows from Corollary 2.5.2.

It becomes convenient to let M sm(e, f) represent the mean number of sets

remaining in an advantage or tiebreaker match from set score (e, f).

M sm(e, f) = 1 + ps
T M sm(e + 1, f) + (1− ps

T )M sm(e, f + 1)

Boundary values: M sm(e, f) = 0 if e = 3, f ≤ 2 or f = 3, e ≤ 2, M sm(2, 2) = 1.

2.5.3 Variance of the number of sets remaining in a match

Let V sm
A (e, f) represent the variance of the number of sets remaining in an advan-

tage match for player A from set score (e, f) for player A serving the first game in

the match. Let V
sm

T
A (e, f) represent the variance of the number of sets remaining

in a tiebreaker match for player A from set score (e, f) for player A serving the

first game in the match. Similar to Theorem 2.5.4, it can be shown using Corol-

lary 2.5.2 that V sm
A (e, f) = V sm

B (e, f) = V
sm

T
A (e, f) = V

sm
T

B (e, f). Therefore it

becomes convenient to let V sm(e, f) represent the variance of the number of sets

remaining in an advantage or tiebreaker match from set score (e, f).

V sm(e, f) = ps
T V sm(e + 1, f) + (1− ps

T )V sm(e, f + 1)+
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ps
T (1− ps

T )[M sm(e + 1, f)−M sm(e, f + 1)]2

Boundary values: V sm(e, f) = 0 if e = 3, f ≤ 2 or f = 3, e ≤ 2, V sm(2, 2) = 0.

2.5.4 Probabilities of reaching score lines within a match

Let N sm
A (e, f |k, l) represent the probabilities for player A of reaching a set score

(e, f) in an advantage match from set score (k, l) with player A serving the first

game in the match. Let N
sm

T
A (e, f |k, l) represent the probabilities for player A

of reaching a set score (e, f) in a tiebreaker match from set score (k, l) with

player A serving the first game in the match. Once again it can be shown

by forward recursion using Corollary 2.5.2 that N sm
A (e, f |k, l) = N sm

B (e, f |k, l)

and N
sm

T
A (e, f |k, l) = N

sm
T

B (e, f |k, l). Therefore, it becomes convenient to let

N sm(e, f |k, l) and N sm
T (e, f |k, l) represent the probabilities for player A of reach-

ing a set score (e, f) from set score (k, l) in an advantage match and tiebreaker

match respectively.

N sm(e, f |k, l) = ps
T N sm(e− 1, f |k, l), for 0 ≤ e ≤ 3, f = 0 or e = 3, f = 1

N sm(e, f |k, l) = psN sm(e− 1, f |k, l), for e = 3, f = 2

N sm(e, f |k, l) = (1− ps
T )N sm(e, f − 1|k, l), for 0 ≤ f ≤ 3, e = 0 or e = 1, f = 3

N sm(e, f |k, l) = (1− ps)N sm(e, f − 1|k, l), for f = 3, e = 2

N sm(e, f |k, l) = ps
T N sm(e− 1, f |k, l) + (1− ps

T )N sm(e, f − 1|k, l),

for 1 ≤ e ≤ 2, 1 ≤ f ≤ 2

The boundary value is N sm(e, f |k, l) = 1 if e = f and k = l.

N sm
T (e, f |k, l) = ps

T N sm
T (e− 1, f |k, l), for e = 3 or f = 0

N sm
T (e, f |k, l) = (1− ps

T )N sm
T (e, f − 1|k, l), for f = 3 or e = 0

N sm
T (e, f |k, l) = ps

T N sm
T (e− 1, f |k, l) + (1− ps

T )N sm
T (e, f − 1|k, l),
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for 1 ≤ e ≤ 2, 1 ≤ f ≤ 2

The boundary value is N sm
T (e, f |k, l) = 1 if e = k and f = l.

Table 2.14 lists the probability of reaching various score lines in a tiebreaker

match given k = 0, l = 0 with pA = 0.62 and pB = 0.60. It indicates that the

probability of reaching 2 sets-all is given by 0.36. It also shows the probability

of player A winning the match is given by N sm
T (3, 0|0, 0) + N sm

T (3, 1|0, 0) +

N sm
T (3, 2|0, 0) = 0.63, which agrees with the result obtained from Table 2.13.

B score
0 1 2 3

0 1 0.43 0.19 0.08
A score 1 0.57 0.49 0.32 0.14

2 0.32 0.42 0.36 0.16
3 0.18 0.24 0.21

Table 2.14: The probability of reaching various score lines in a tiebreaker match
from k = 0, l = 0 with pA = 0.62 and pB = 0.60

Let N
sm

T
A,B (e, f |k, l) represent the probabilities of player A reaching a set score

(e, f) in a tiebreaker match from set score (k, l) with player A serving at (e, f)

and player B serving at (k, l). Let N
sm

T
B,B (e, f |k, l) represent the probabilities of

player A reaching a set score (e, f) in a tiebreaker match from set score (k, l)

with player B serving at (e, f) and player B serving at (k, l).

Numerical results can be obtained for N
sm

T
A,B (e, f |k, l) and N

sm
T

B,B (e, f |k, l), for

all (e, f |k, l). For example:

N
sm

T
A,B (1, 0|0, 0) = N

gs
T

A (6, 1|0, 0) + N
gs

T
A (6, 3|0, 0) + N

gs
T

A (7, 6|0, 0)

N
sm

T
A,B (0, 1|0, 0) = N

gs
T

A (1, 6|0, 0) + N
gs

T
A (3, 6|0, 0) + N

gs
T

A (6, 7|0, 0)

N
sm

T
B,B (1, 0|0, 0) = N

gs
T

B (6, 0|0, 0)+N
gs

T
B (6, 2|0, 0)+N

gs
T

B (6, 4|0, 0)+N
gs

T
B (7, 5|0, 0)
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N
sm

T
B,B (0, 1|0, 0) = N

gs
T

B (0, 6|0, 0)+N
gs

T
B (2, 6|0, 0)+N

gs
T

B (4, 6|0, 0)+N
gs

T
B (5, 7|0, 0)

When pA = 0.62 and pB = 0.60:

N
sm

T
A,B (1, 0|0, 0) = 0.19

N
sm

T
A,B (0, 1|0, 0) = 0.28

N
sm

T
B,B (1, 0|0, 0) = 0.38

N
sm

T
B,B (0, 1|0, 0) = 0.16

Now N
sm

T
A,B (1, 0|0, 0)+N

sm
T

B,B (1, 0|0, 0) = 0.57, which agrees with N sm
T (1, 0|0, 0)

from Table 2.14. Similarly, N
sm

T
A,B (0, 1|0, 0)+N

sm
T

B,B (0, 1|0, 0) = 0.43, which agrees

with N sm
T (0, 1|0, 0) from Table 2.14.

It can be shown that N sm
T (e, f |k, l) = N

sm
T

A,B (e, f |k, l)+N
sm

T
B,B (e, f |k, l) for all

(e, f |k, l).

2.6 Modelling other racket sports

Miles [49] defines a uniformat as a binary process that consists of only one type of

point in the match. Similarly a biformat is a binary process that consists of two

types of points (in tennis this is each player winning a point on serve). Tennis

is essentially a biformat that contains 4 levels (point, game, set, match) or 3

levels of nesting, where the scoring for each level of nesting is defined according

to the rules of tennis. The notation used in this chapter has been specifically

designed for tennis, but can easily be applied to other biformats. For example

P pg
A (a, b) has been used in tennis to represent the conditional probabilities of

player A winning a game on serve from point score (a, b). This could be used to

represent the conditional probabilities of player A winning a game of table tennis

or badminton or squash on serve from point score (a, b).
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A generalized version of a game of tennis is defined as follows: the first player

to reach N points and be ahead by at least 2 points wins the game. If the point

score reaches N − 1 points-all, then the game continues indefinitely until one

player is two points ahead, and wins the game. If P (N − 1, N − 1) represents the

conditional probability of player A winning the game from (N −1, N −1) points-

all, then P (N−1, N−1) = p2

p2+(1−p)2
, where p represents the probability of player

A winning a point. A more standard notation would be P (N − 1, N − 1|p), as

represented by Equation 2.6.1, showing more clearly the conditional dependence

of the probability of winning a game upon the probability of winning a point.

Similarly the mean number of points remaining in the game from N−1 points-all

M(N−1, N−1|p), and the associated variance V (N−1, N−1|p), are represented

by Equations 2.6.2 and 2.6.3 respectively.

P (N − 1, N − 1|p) =
p2

p2 + (1− p)2
(2.6.1)

M(N − 1, N − 1|p) =
2

p2 + (1− p)2
(2.6.2)

V (N − 1, N − 1|p) =
8p(1− p)

[p2 + (1− p)2]2
(2.6.3)

A generalized version of an advantage set where each player has a constant

probability of winning a game throughout the set is defined as follows: the first

player to reach N games and be ahead by at least 2 games wins the set. If the

game score reaches N − 1 games-all, then the set continues indefinitely until one

player is two games ahead, and wins the set. The probability of player A winning

an advantage set from N − 1 games-all, can be calculated from Equation 2.6.1,

where p becomes the probability of player A winning a game. Similarly the mean
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number of games remaining in the set from N − 1 games-all with the associated

variance can be calculated from Equations 2.6.2 and 2.6.3 respectively.

Since serving is an advantage in tennis, a more realistic model of a generalized

version of an advantage set, is to have two parameters, one for each player winning

a game on serve. Equation 2.6.4 becomes the probability of player A winning an

advantage set from N−1 games-all, where pA and pB become the probabilities of

player’s A and B winning a game on their serve respectively. Similarly, Equations

2.6.5 and 2.6.6 represent the mean number of games remaining in an advantage

set from N − 1 games-all with the associated variance. When pA = 1 − pB,

Equations 2.6.4, 2.6.5 and 2.6.6 are equivalent to Equations 2.6.1, 2.6.2 and 2.6.3

respectively.

P (N − 1, N − 1|pA, pB) =
pA(1− pB)

pA(1− pB) + pB(1− pA)
(2.6.4)

M(N − 1, N − 1|pA, pB) =
2

pA(1− pB) + pB(1− pA)
(2.6.5)

V (N − 1, N − 1|pA, pB) =
4[pApB + (1− pB)(1− pA)]

[pA(1− pB) + pB(1− pA)]2
(2.6.6)

In an advantage set players alternate serve after each game has been played.

Suppose an advantage set was played where one player served the first game and

then players alternate serve every two consecutive games. It can be shown that

the probability of player A winning the set from N − 1 = 5 games-all can be

calculated by Equation 2.6.4. By letting pA and pB represent the probabilities of

player’s A and B winning a point on their serve respectively, Equation 2.6.4 can

be used to calculate the probability of player A winning a tiebreaker game from

N − 1 = 6 points-all. Putting all the above together gives the following:
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The probability of player A winning a game from deuce, winning an advan-

tage set from 5 games-all and winning a tiebreaker game from 6 points-all are

calculated from Equation 2.6.4. For a standard game, pA = 1 − pB, where pA

represents the probability of player A winning a point on serve. For a tiebreaker

game, pA and pB represent the probabilities of player’s A and B winning a point

on their serve respectively, and for an advantage set, pA and pB represent the

probabilities of player’s A and B winning a regular game on their serve respec-

tively. Similarly, the mean lengths and associated variances can be calculated

from Equations 2.6.5 and 2.6.6 respectively.

2.6.1 Model 1

PA(a, b) = pAPB(a + 1, b) + (1− pA)PB(a, b + 1)

PB(a, b) = (1− pB)PA(a + 1, b) + pBPA(a, b + 1)

Boundary values: PA(a, b) = PB(a, b) = 1 if a = N , 0 ≤ b ≤ N − 2, PA(a, b) =

PB(a, b) = 0 if b = N , 0 ≤ a ≤ N − 2, PA(N − 1, N − 1|pA, pB) = PB(N − 1, N −
1|pA, pB) = pA(1−pB)

pA(1−pB)+(1−pA)pB
.

Model 1 becomes a regular tennis game when pB = 1 − pA, PB(a, b) = PA(a, b),

and N = 4. Model 1 becomes an advantage tennis set when PA(a, b) and PB(a, b)

represent the conditional probabilities of player A winning a set from game score

(a, b) with players A and B serving respectively, pA and pB represent the proba-

bilities of players A and B winning a game on serve respectively, and N = 6.

2.6.2 Model 2

PA(a, b) = pAPB(a + 1, b) + (1− pA)PB(a, b + 1), if (a + b) mod 2 = 0

PA(a, b) = pAPA(a + 1, b) + (1− pA)PA(a, b + 1), if (a + b) mod 2 6= 0
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PB(a, b) = (1− pB)PA(a + 1, b) + pBPA(a, b + 1), if (a + b) mod 2 = 0

PB(a, b) = (1− pB)PB(a + 1, b) + pBPB(a, b + 1), if (a + b) mod 2 6= 0

Boundary values: PA(a, b) = PB(a, b) = 1 if a = N, 0 ≤ b ≤ N − 2, PA(a, b) =

PB(a, b) = 0 if b = N, 0 ≤ a ≤ N − 2, PA(N − 1, N − 1|pA, pB) = PB(N − 1, N −
1|pA, pB) = pA(1−pB)

pA(1−pB)+(1−pA)pB
.

Model 2 becomes a tiebreaker tennis game when PA(a, b) and PB(a, b) represent

the conditional probabilities of player A winning a tiebreaker game from point

score (a, b) with players A and B serving respectively, pA and pB represent the

probabilities of players A and B winning a point on serve respectively, and N = 7.

2.6.3 Model 3

P (a, b) = pP (a + 1, b) + (1− p)P (a, b + 1)

Boundary values: P (a, b) = 1 if a = N , b ≤ N − 1, P (a, b) = 0 if b = N ,

a ≤ N − 1.

Model 3 becomes a best-of-5 set tiebreaker tennis match when P (a, b) = the

conditional probability of player A winning a match from set score (a, b), p = the

probability of player A winning a tiebreaker set and, N = 3. Model 3 can also

be used for a best-of-3 set tiebreaker tennis match.

Similar formulas for all three models can be developed for mean lengths with

the associated variances, and the probabilities of reaching score lines. These

models can be applied to other racket sports. For example, in the traditional

scoring system in table tennis, a player that first reaches 3 games, with each

game consisting of first to 21 points and at least two points ahead, wins the

match. Assuming there is no advantage in serving in table tennis, a game is
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represented by Model 1 when pB = 1− pA, PB(a, b) = PA(a, b), and N = 21, and

a match is represented by Model 3 with N = 3.

2.7 Summary

In this chapter, a tennis model has been developed using the i.i.d. assumption

of players winning a point on serve. Backward recurrence formulas have been

used to calculate the probabilities of winning a game, mean number of points

remaining in the game and variances of the number of points remaining in the

game, all conditional on the point score. Forward recurrence formulas have been

used to calculate the probabilities of reaching various score lines within a game

from any position in the game. Similar formulas are developed for a tiebreaker

game, advantage and tiebreaker set, and for a tiebreaker and advantage match,

to calculate probabilities and mean lengths with the associated variances. It is

shown how the Markov chain model can be applied to other racket sports.

The i.i.d. assumption of players winning a point on serve leads to closed

form expressions for the various means and variances. To calculate the higher

order moments and coefficients of skewness and kurtosis of the number of points,

games or sets, it becomes convenient to use forward recurrence formulas to find

the required probabilities, which can then be summarized by using generating

functions. This is established in Chapter 3.



Chapter 3

DISTRIBUTION OF POINTS
IN A TENNIS MATCH

3.1 Introduction

Pollard [58] calculated the mean and variance of the number of points in a game

and the number of points in an advantage and tiebreaker set, by direct calcula-

tion and by using the probability generating function. It is well established that

the mean and standard deviation completely describe the normal distribution.

When a distribution is not symmetrical about the mean, the coefficients of skew-

ness and kurtosis, as defined in Stuart and Ord [70], are important to graphically

interpret the shape of the distribution. This commonly has been done by using

the probability or moment generating function. The cumulant generating func-

tion (taking the natural logarithm of the moment generating function), can also

be used to calculate the mean, standard deviation, and coefficients of skewness

and kurtosis for the number of points, games and sets in a tennis match. The

cumulant generating function is particularly useful for calculating the parameters

of distributions for the number of points in a tiebreaker match, since the critical

property of cumulant generating functions is that they are additive for linear

combinations of independent random variables.

47
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In this chapter we calculate the distribution of points in a game, the mean

number of points in a game with its associated standard deviation and the coeffi-

cients of variation, skewness and kurtosis. Similar calculations are produced for a

tiebreaker game in points, a tiebreaker and advantage set in games, a tiebreaker

and advantage match in sets, and a tiebreaker and advantage set in points. Ap-

proximation results are formulated to calculate the parameters of distributions of

the number of points in a set, which are then used to calculate the parameters of

distributions of the number of points in a match. Since all the sets in a tiebreaker

match are independent and identically distributed when pA = 1− pB, simplified

formulas developed in Brown [9] can be used to calculate the parameters of dis-

tributions for the number of points in a tiebreaker match. These formulas can

also be used to calculate the parameters of distributions for the time duration of

a match, based on the amount of time to play a point, the time between points

and the number of points in a match.

3.2 Points in a game

Let X be a random variable of the number of points played in a game. Let f pg
A (x)

represent the distribution of the number of points played in a game for player A

serving, where fpg
A (x) = P (X = x). It becomes convenient when (g = 0, h = 0)

to let Npg
A (a, b|0, 0) = Npg

A (a, b).

3.2.1 Distribution of points in a game

fpg
A (4) = Npg

A (4, 0) + Npg
A (0, 4)

fpg
A (5) = Npg

A (4, 1) + Npg
A (1, 4)

fpg
A (6) = Npg

A (4, 2) + Npg
A (2, 4)

fpg
A (x) = Npg

A (3, 3)[p2
A + (1− pA)2][2pA(1− pA)]

x−8
2 , if x = 8, 10, 12, ....
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Note that forward recursion was used in Chapter 2 to calculate Npg
A (a, b).

3.2.2 Mean number of points in a game

Let X be a random variable with moment generating function m(t), then the

cumulant generating function κ(t) of X is given by κ(t) = logem(t). It is estab-

lished (Stuart and Ord [70]) that the mean, variance, coefficient of skewness and

coefficient of kurtosis of X are given by:

M(X) = κ(1)(0) = m(1)(0)

V (X) = κ(2)(0) = m(2)(0)−m(1)(0)
2

S(X) = κ(3)(0)

κ(2)(0)
3
2

= m(3)(0)−3m(2)(0)m(1)(0)+2m(1)(0)
3

[m(2)(0)−m(1)(0)
2
]
3
2

K(X) = κ(4)(0)

κ(2)(0)
2 + 3 = m(4)(0)−4m(3)(0)m(1)(0)−3m(2)(0)2+12m(2)(0)m(1)(0)2−6m(1)(0)4

[m(2)(0)−m(1)(0)
2
]2

+ 3

where:

M(X) = mean

V (X) = variance

S(X) = coefficient of skewness

K(X) = coefficient of kurtosis

m(n)(0) = the nth derivative of the moment generating function evaluated at t = 0

κ(n)(0) = the nth derivative of the cumulant generating function evaluated at

t = 0

By this definition K(X) = 3 for the normal distribution.

It can be observed that working with the cumulant generating function as

opposed to using the moment generating function for the number of points in a
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game, simplifies the calculations for the coefficients of skewness and kurtosis. This

makes the calculations easier to implement on a mathematics software package.

The moment generating function for the number of points in a game for player

A serving, mpg
A (t), becomes:

∑
x etxf pg

A (x) = e4tfpg
A (4) + e5tfpg

A (5) + e6tf pg
A (6) +

Npg
A (3,3)(1−Npg

A (1,1))e8t

1−Npg
A (1,1)e2t

The cumulant generating function for the number of points in a game for player

A serving, κpg
A (t), becomes:

loge[e
4tf pg

A (4) + e5tf pg
A (5) + e6tfpg

A (6) +
Npg

A (3,3)(1−Npg
A (1,1))e8t

1−Npg
A (1,1)e2t ]

The first derivative of the cumulant generating function evaluated at t = 0,

κ
pg(1)
A (0), is equivalent to the mean number of points in a game, Mpg

A (0, 0). Since

Mpg
A (a, b) is the mean number of points remaining in game from point score (a, b),

it becomes convenient when (a = 0, b = 0), to let Mpg
A (0, 0) = Mpg

A , and to use

this to represent the mean number of points in a game. Similar notation is used

for the variance of the number of points in a game, and all the other nested

scoring that exists in a tennis match. It follows that:

Mpg
A =

4{pA(1− pA)[6p2
A(1− pA)2 − 1]− 1}

1− 2pA(1− pA)

3.2.3 Variance of the number of points in a game

The second derivative of the cumulant generating function evaluated at t = 0,

κ
pg(2)
A (0), is equivalent to the variance of the number of points in a game, V pg

A .

This can be calculated as:

V pg
A =

4pA(1− pA)[1− pA(1− pA)(1− 12pA(1− pA)(3− pA(1− pA)(5 + 12p2
A(1− pA)2)))]

[1− 2pA(1− pA)]2
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3.2.4 Coefficient of skewness of the number of points in a
game

Let Spg
A represent the coefficient of skewness of the number of points in a game

for player A serving.

The third derivative of the cumulant generating function evaluated at t = 0,

becomes:

κ
pg(3)
A (0) = 4pA(1− pA)(1− pA + 187p2

A − 840p3
A + 2118p4

A − 6108p5
A + 20916p6

A −
53952p7

A+98160p8
A−154656p9

A+260928p10
A −412992p11

A +488160p12
A −387072p13

A +

193536p14
A − 55296p15

A + 6912p16
A )/(1− 2pA + 2p2

A)3

The coefficient of skewness of the number of points in a game can be calculated

by:

Spg
A =

κ
pg(3)
A (0)

κ
pg(2)
A (0)

3
2

3.2.5 Coefficient of kurtosis of the number of points in a
game

Let Kpg
A represent the coefficient of kurtosis of the number of points in a game

for player A serving.

The fourth derivative of the cumulant generating function evaluated at t = 0,

becomes:

κ
pg(4)
A (0) = 4pA(1−pA)(1+pA+871p2

A−4004p3
A+13364p4

A−67596p5
A+323140p6

A−
1077024p7

A+2742960p8
A−6502224p9

A+15475344p10
A −33228864p11

A +59797440p12
A −

94218048p13
A + 141430464p14

A − 201056256p15
A + 245099520p16

A − 233653248p17
A +
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164643840p18
A −82114560p19

A +27371520p20
A −5474304p21

A +497664p22
A )/(1−2pA +

2p2
A)4

The coefficient of kurtosis of the number of points in a game can be calculated

by:

Kpg
A =

κ
pg(4)
A (0)

κ
pg(2)
A (0)

2 + 3

Let Upg
A represent the standard deviation of the number of points in a game

for player A serving. Let Cpg
A represent the coefficient of variation of the number

of points in a game for player A serving. It follows that Upg
A =

√
V pg

A and

Cpg
A =

Upg
A

Mpg
A

. Table 3.1 represents Mpg
A , Upg

A , Cpg
A , Spg

A and Kpg
A for different values

of pA. The calculations were performed using Mathematica. For example when

pA = 0.60, Mpg
A = 6.48, Upg

A = 2.59 and V pg
A = 2.592 = 6.7, which agree with the

values obtained for calculating the mean and variance of the number of points in a

game in Chapter 2 using backward recursion. It is convenient to use the cumulant

generating function to calculate the higher order moments. Figure 3.1 represents

a graph of Mpg
A and Upg

A for all values of pA. There is a unique maximum for Mpg
A

at 6.75 and Upg
A at 2.77 when pA = 0.50. Figure 3.2 represents a graph of Cpg

A ,

Spg
A and Kpg

A . There is a unique maximum for Cpg
A at 0.41 when pA = 0.50. There

is a unique minimum for Spg
A at 2.16 and Kpg

A at 9.95 when pA = 0.50. There

is a relative maximum for Kpg
A at 17.1 when pA = 0.92 and 0.08, and a relative

minimum at 16.93 when pA = 0.95 and 0.05. Also Spg
A and Kpg

A are undefined

when pA = 0 or 1.
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pA Mpg
A Upg

A Cpg
A Spg

A Kpg
A

0.50 6.75 2.77 0.41 2.16 9.95
0.55 6.68 2.73 0.41 2.17 10.01
0.60 6.48 2.59 0.40 2.20 10.21
0.65 6.19 2.37 0.38 2.25 10.59
0.70 5.83 2.10 0.36 2.34 11.25
0.75 5.45 1.78 0.33 2.46 12.27
0.80 5.09 1.44 0.28 2.61 13.71
0.85 4.75 1.10 0.23 2.74 15.47
0.90 4.46 0.79 0.18 2.81 16.91
0.95 4.21 0.49 0.12 2.92 16.93

Table 3.1: The parameters of the distributions of points in a game for different
values of pA

3.3 Points in a tiebreaker game

3.3.1 Distribution of points in a tiebreaker game

Let X be a random variable of the number of points played in a tiebreaker

game. Let f
pg

T
A (x) represent the distribution of the number of points played in a

tiebreaker game for player A serving first in the game, where f
pg

T
A (x) = P (X = x).

It becomes convenient when (g = 0, h = 0) to let N
pg

T
A (a, b|0, 0) = N

pg
T

A (a, b).

We have the following representation of the distribution of points in a tiebreaker

game for player A serving first in the game.

f
pg

T
A (7) = N

pg
T

A (7, 0) + N
pg

T
A (0, 7)

f
pg

T
A (8) = N

pg
T

A (7, 1) + N
pg

T
A (1, 7)

f
pg

T
A (9) = N

pg
T

B (7, 2) + N
pg

T
B (2, 7)

f
pg

T
A (10) = N

pg
T

B (7, 3) + N
pg

T
B (3, 7)

f
pg

T
A (11) = N

pg
T

A (7, 4) + N
pg

T
A (4, 7)

f
pg

T
A (12) = N

pg
T

A (7, 5) + N
pg

T
A (5, 7)
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Figure 3.1: The mean and standard deviation of the number of points in a game
for all values of pA

Figure 3.2: The coefficients of variation, skewness and kurtosis of the number of
points in a game for all values of pA

f
pg

T
A (x) = N

pg
T

A (6, 6)[pA(1 − pB) + (1 − pA)pB][pApB + (1 − pB)(1 − pA)]
x−14

2 , if

x = 14, 16, 18, ....

3.3.2 Parameters of distributions of the number of points
in a tiebreaker game

The calculations are conditional on player A serving first in the game.

The moment generating function m
pg

T
A (t) becomes:
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pA pB M
pg

T
A U

pg
T

A C
pg

T
A S

pg
T

A K
pg

T
A

0.50 0.50 11.74 2.91 0.25 1.77 8.64
0.50 0.60 11.62 2.89 0.25 1.78 8.75
0.50 0.70 11.27 2.81 0.25 1.84 9.24
0.50 0.80 10.73 2.62 0.24 1.99 10.55
0.50 0.90 10.06 2.24 0.22 2.21 13.47
0.60 0.60 11.84 3.00 0.25 1.88 9.18
0.60 0.70 11.81 3.08 0.26 2.02 9.95
0.60 0.80 11.50 3.07 0.27 2.24 11.49
0.60 0.90 10.91 2.84 0.26 2.67 15.32
0.70 0.70 12.18 3.38 0.28 2.20 10.81
0.70 0.80 12.28 3.66 0.30 2.45 12.27
0.70 0.90 12.00 3.83 0.32 2.87 15.37
0.80 0.80 13.02 4.46 0.34 2.60 12.98
0.80 0.90 13.55 5.52 0.41 2.82 14.19
0.90 0.90 16.18 8.79 0.54 2.64 12.73

Table 3.2: The parameters of the distributions of points in a tiebreaker game for
different values of pA and pB

∑
x etxf

pg
T

A (x) = e7tf
pg

T
A (7)+e8tf

pg
T

A (8)+e9tf
pg

T
A (9)+e10tf

pg
T

A (10)+e11tf
pg

T
A (11)+

e12tf
pg

T
A (12) +

N
pg

T
A (6,6)(1−N

pg
T

A (1,1))e14t

1−N
pg

T
A (1,1)e2t

The cumulant generating function κ
pg

T
A (t) can then be calculated as:

κ
pg

T
A (t) = loge[m

pg
T

A (t)]

Let U
pg

T
A , C

pg
T

A , S
pg

T
A and K

pg
T

A represent the standard deviation, and coeffi-

cients of variation, skewness and kurtosis for the number of points in a tiebreaker

game for player A serving first in the game respectively. Table 3.2 represents

M
pg

T
A , U

pg
T

A , C
pg

T
A , S

pg
T

A and K
pg

T
A for different values of pA and pB. It can be

observed that for a constant pB, M
pg

T
A , U

pg
T

A and C
pg

T
A are increasing as pA is

increasing. Also for a constant pA, both S
pg

T
A and K

pg
T

A are increasing as pB is

increasing.
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3.4 Games in a set

3.4.1 Distribution of games in a set

Let X be a random variable of the number of games played in a set. Let f gs
A (x)

represent the distribution of the number of games played in an advantage set for

player A serving first in the set, where f gs
A (x) = P (X = x). Let f

gs
T

A (x) represent

the distribution of the number of games played in a tiebreaker set for player A

serving first in the set, where f
gs

T
A (x) = P (X = x). It becomes convenient when

(i = 0, j = 0) to let N gs
A (c, d|0, 0) = N gs

A (c, d) and N
gs

T
A (c, d|0, 0) = N

gs
T

A (c, d).

We have the following representation of the distribution of games in a set for

player A serving first in the set.

f
gs

T
A (6) = N

gs
T

A (6, 0) + N
gs

T
A (0, 6)

f
gs

T
A (7) = N

gs
T

B (6, 1) + N
gs

T
B (1, 6)

f
gs

T
A (8) = N

gs
T

A (6, 2) + N
gs

T
A (2, 6)

f
gs

T
A (9) = N

gs
T

B (6, 3) + N
gs

T
B (3, 6)

f
gs

T
A (10) = N

gs
T

A (6, 4) + N
gs

T
A (4, 6)

f
gs

T
A (12) = N

gs
T

A (7, 5) + N
gs

T
A (5, 7)

f
gs

T
A (13) = N

gs
T

A (6, 6)

f gs
A (6) = N gs

A (6, 0) + N gs
A (0, 6)

f gs
A (7) = N gs

B (6, 1) + N gs
B (1, 6)

f gs
A (8) = N gs

A (6, 2) + N gs
A (2, 6)

f gs
A (9) = N gs

B (6, 3) + N gs
B (3, 6)

f gs
A (10) = N gs

A (6, 4) + N gs
A (4, 6)

f gs
A (x) = N gs

A (5, 5)[pg
A(1 − pg

B) + (1 − pg
A)pg

B][pg
Apg

B + (1 − pg
B)(1 − pg

A)]
x−12

2 if

x = 12, 14, 16, ....
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3.4.2 Parameters of distributions of the number of games
in a set

The calculations are conditional on player A serving first in the set.

The moment generating functions for the number of games in a set, m
gs

T
A (t) and

mgs
A (t), become:

m
gs

T
A (t) = e6tf

gs
T

A (6)+e7tf
gs

T
A (7)+e8tf

gs
T

A (8)+e9tf
gs

T
A (9)+e10tf

gs
T

A (10)+e12tf
gs

T
A (12)+

e13tf
gs

T
A (13)

mgs
A (t) = e6tf gs

A (6)+e7tf gs
A (7)+e8tf gs

A (8)+e9tf gs
A (9)+e10tf gs

A (10)+
Ngs

A (5,5)(1−Ngs
A (1,1))e12t

1−Ngs
A (1,1)e2t

Let U gs
A , Cgs

A , Sgs
A and Kgs

A respectively represent the standard deviation, and

coefficients of variation, skewness and kurtosis for the number of games in an

advantage set for player A serving first in the set. Let U
gs

T
A , C

gs
T

A , S
gs

T
A and

K
gs

T
A respectively represent the standard deviation, and coefficients of variation,

skewness and kurtosis for the number of games in a tiebreaker set for player A

serving first in the set. Table 3.3 represents M gs
A , U gs

A , Cgs
A , Sgs

A , Kgs
A , M

gs
T

A , U
gs

T
A ,

C
gs

T
A , S

gs
T

A and K
gs

T
A for different values of pg

A and pg
B. It can be observed that:

M gs
A > M

gs
T

A ,

U gs
A > U

gs
T

A ,

Cgs
A > C

gs
T

A ,

Sgs
A > S

gs
T

A and

Kgs
A > K

gs
T

A for all pg
A and pg

B.

This is showing that the number of points played in an advantage set is larger,

more variable and more skewed compared to a tiebreaker set. It is worth noting

that for pg
A and pg

B = 0.9, S
gs

T
A = -0.14, indicating negative or left skewness.
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pg
A pg

B M
gs

T
A U

gs
T

A C
gs

T
A S

gs
T

A K
gs

T
A M gs

A U gs
A Cgs

A Sgs
A Kgs

A

0.5 0.5 9.66 1.92 0.20 0.29 2.23 10.03 2.85 0.28 1.92 9.14
0.5 0.6 9.60 1.93 0.20 0.31 2.27 9.95 2.83 0.28 1.94 9.30
0.5 0.7 9.39 1.92 0.20 0.40 2.39 9.70 2.74 0.28 2.01 9.87
0.5 0.8 9.07 1.87 0.21 0.54 2.68 9.31 2.57 0.28 2.17 11.19
0.5 0.9 8.64 1.73 0.20 0.73 3.27 8.79 2.24 0.25 2.42 14.03
0.6 0.5 9.58 1.93 0.20 0.32 2.26 9.93 2.83 0.28 1.93 9.25
0.6 0.6 9.71 1.92 0.20 0.28 2.21 10.13 2.96 0.29 2.01 9.64
0.6 0.7 9.71 1.91 0.20 0.30 2.24 10.15 3.03 0.30 2.14 10.40
0.6 0.8 9.55 1.89 0.20 0.38 2.38 9.98 3.04 0.30 2.34 11.85
0.6 0.9 9.24 1.83 0.20 0.53 2.73 9.58 2.88 0.30 2.71 15.04
0.7 0.5 9.33 1.94 0.21 0.43 2.37 9.64 2.77 0.29 2.00 9.71
0.7 0.6 9.66 1.94 0.20 0.32 2.22 10.10 2.47 0.24 2.12 10.22
0.7 0.7 9.88 1.91 0.19 0.27 2.15 10.47 3.36 0.32 2.28 11.04
0.7 0.8 9.95 1.89 0.19 0.27 2.16 10.67 3.66 0.34 2.49 12.33
0.7 0.9 9.85 1.86 0.19 0.34 2.29 10.62 3.89 0.37 2.82 14.79
0.8 0.5 8.94 1.91 0.21 0.64 2.72 9.17 2.61 0.28 2.19 11.01
0.8 0.6 9.42 1.95 0.21 0.45 2.34 9.84 3.10 0.32 2.31 11.44
0.8 0.7 9.86 1.94 0.20 0.30 2.11 10.58 3.71 0.35 2.44 11.97
0.8 0.8 10.21 1.90 0.19 0.20 1.97 11.35 4.52 0.40 2.58 12.61
0.8 0.9 10.42 1.85 0.18 0.14 1.90 12.12 5.62 0.46 2.73 13.52
0.9 0.5 8.42 1.75 0.21 0.95 3.61 8.56 2.27 0.27 2.56 14.39
0.9 0.6 8.99 1.89 0.21 0.71 2.83 9.34 2.96 0.32 2.71 14.56
0.9 0.7 9.61 1.97 0.20 0.45 2.24 10.39 4.00 0.38 2.74 14.02
0.9 0.8 10.27 1.97 0.19 0.18 1.83 11.96 5.73 0.48 2.67 13.04
0.9 0.9 10.93 1.86 0.17 -0.14 1.60 14.76 9.04 0.61 2.52 11.90

Table 3.3: The parameters of the distributions of games in a tiebreaker and
advantage set for different values of pg

A and pg
B
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The following results can also be observed from Table 3.3:

If pg
A > pg

B, then M gs
A < M gs

B and M
gs

T
A < M

gs
T

B .

If pg
A < pg

B, then M gs
A > M gs

B and M
gs

T
A > M

gs
T

B .

If pg
A = pg

B or pg
A = 1− pg

B, then M gs
A = M gs

B and M
gs

T
A = M

gs
T

B .

If pg
A > pg

B, then U gs
A > U gs

B and U
gs

T
A > U

gs
T

B .

If pg
A < pg

B, then U gs
A < U gs

B and U
gs

T
A < U

gs
T

B .

If pg
A = pg

B or pg
A = 1− pg

B, then U gs
A = U gs

B and U
gs

T
A = U

gs
T

B .

This is showing that if a player has a higher probability of winning a game

on serve than their opponent, then the expected number of games in a set will

be shorter if this player serves first in the set compared to their opponent serving

first in the set. However the standard deviation of the number of games in a set

will be greater.

3.5 Sets in a match

3.5.1 Distribution of sets in a match

Let X be a random variable of the number of sets played in a match. Let

f sm(x) and f sm
T (x) represent the distribution of the number of sets played in

an advantage and tiebreaker match respectively. It can be shown that f sm(x) =

f sm
T (x). Therefore it becomes convenient to let f sm(x) represent the distribution

of the number of sets played in a tiebreaker or advantage match, where f sm(x) =

P (X = x). It becomes convenient when (k = 0, l = 0) to let N sm(e, f |0, 0) =

N sm(e, f) and N sm
T (e, f |0, 0) = N sm

T (e, f).

Since f sm(x) = f sm
T (x), it follows that:

N sm(3, 0) + N sm(0, 3) = N sm
T (3, 0) + N sm

T (0, 3)
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N sm(3, 1) + N sm(1, 3) = N sm
T (3, 1) + N sm

T (1, 3)

N sm(3, 2) + N sm(2, 3) = N sm
T (3, 2) + N sm

T (2, 3)

The distribution of sets in a match become:

f sm(3) = N sm(3, 0) + N sm(0, 3)

f sm(4) = N sm(3, 1) + N sm(1, 3)

f sm(5) = N sm(3, 2) + N sm(2, 3)

When f sm(3) = f sm(5), the distribution of a match is symmetrical. This

occurs when N sm(3, 0)+N sm(0, 3) = N sm(3, 2)+N sm(2, 3), or equivalently when

(ps
T )3 + (1− ps

T )3 = 6(ps
T )3(1− ps

T )2 + 6(ps
T )2(1− ps

T )3.

Solving this expression for ps
T using Mathematica, gives the solutions:

1.
3−
√

18−3
√

33

6
= 0.354

2.
3+
√

18−3
√

33

6
= 0.646

3.
3−
√

18+3
√

33

6
= −0.489

4.
3+
√

18+3
√

33

6
= 1.489

Since 0 ≤ ps
T ≤ 1, only solutions 1. and 2. are applicable. Figure 3.3

illustrates the distribution of a match for ps
T = 0.646, for which f sm(4) = 0.37.

3.5.2 Parameters of distributions of the number of sets in
a match

The moment generating function for the number of sets in a tiebreaker or advan-

tage match, msm(t), becomes:

msm(t) = e3tf sm(3) + e4tf sm(4) + e5tf sm(5)
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Figure 3.3: The distribution of sets in a match for ps
T = 0.646

ps
T M sm U sm Csm Ssm Ksm

0.50 4.13 0.78 0.19 -0.22 1.67
0.55 4.11 0.78 0.19 -0.20 1.65
0.60 4.07 0.79 0.19 -0.12 1.62
0.65 3.99 0.79 0.20 0.01 1.59
0.70 3.89 0.79 0.20 0.19 1.63
0.75 3.77 0.77 0.20 0.41 1.78
0.80 3.63 0.73 0.20 0.70 2.15
0.85 3.48 0.67 0.19 1.06 2.90
0.90 3.32 0.57 0.17 1.57 4.49
0.95 3.16 0.40 0.13 2.52 8.83

Table 3.4: The parameters of the distributions of sets in a match for different
values of ps

T

Let U sm, Csm, Ssm and Ksm represent the standard deviation, and coefficients

of variation, skewness and kurtosis for the number of sets in a match respectively.

Table 3.4 represents M sm, U sm, Csm, Ssm and Ksm for different values of ps
T .

Notice that when ps
T = 0.65, Ssm = 0.01 which is close to zero. This indicates

symmetry about the mean and reflects Figure 3.3.

Figure 3.4 represents a graph of M sm and U sm for all values of ps
T . There is

a unique maximum for M sm at 4.13 when ps
T = 0.50. There are relative maxima

for U sm at 0.65 when ps
T = 0.65 and 0.35. There is a relative minimum for
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Figure 3.4: The mean and standard deviation of the number of sets in a match
for all values of ps

T

Figure 3.5: The coefficients of variation, skewness and kurtosis of the number of
sets in a match for all values of ps

T

U sm at 0.78 when ps
T = 0.50. Figure 3.5 represents a graph of Csm, Ssm and

Ksm. There is a relative minimum for Csm at 0.19 when ps
T = 0.50 and relative

maxima at 0.20 when ps
T = 0.70 and 0.30. There is a unique minimum for Ssm

at -0.22 when ps
T = 0.50. There is a relative maximum for Ksm at 1.67 when

ps
T = 0.50 and relative minima at 1.59 when ps

T = 0.65 and 0.35. Also Ssm and

Ksm are undefined at ps
T =0 or 1.
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3.6 Points in a set

3.6.1 The parameters of distributions of the number of
points in a set

Let mpg
A+(t) and mpg

A−(t) be the moment generating functions of the number

of points in a game when player A wins and loses a game on serve respec-

tively. Let mpg
B+(t) and mpg

B−(t) be the moment generating functions of the

number of points in a game when player B wins and loses a game on serve

respectively. Let s(c, d) be the moment generating function of the number of

points in a set conditioned on reaching game score (c, d). It can be shown

that s(6, 1) = 3[mpg
A+(t)]3[mpg

B−(t)]2[mpg
A+(t)mpg

B+(t)+mpg
A−(t)mpg

B−(t)] and s(1, 6) =

3[mpg
A−(t)]3[mpg

B+(t)]2[mpg
A+(t)mpg

B+(t) + mpg
A−(t)mpg

B−(t)]. Similar conditional mo-

ment generating functions can be obtained for reaching all score lines (c, d) in a

set. The moment generating function for the number of points in a tiebreaker set

becomes:

m
ps

T
A (t) = N

gs
T

A (6, 0)s(6, 0)+N
gs

T
A (6, 1)s(6, 1)+N

gs
T

A (6, 2)s(6, 2)+N
gs

T
A (6, 3)s(6, 3)+

N
gs

T
A (6, 4)s(6, 4)+N

gs
T

A (7, 5)s(7, 5)+N
gs

T
A (0, 6)s(0, 6)+N

gs
T

A (1, 6)s(1, 6)+N
gs

T
A (2, 6)s(2, 6)+

N
gs

T
A (3, 6)s(3, 6)+N

gs
T

A (4, 6)s(4, 6)+N
gs

T
A (5, 7)s(5, 7)+N

gs
T

A (6, 6)s(6, 6)m
pg

T
A (t)

A similar moment generating function can be obtained for the number of

points in an advantage set.

Let Mps
A , Ups

A , Cps
A , Sps

A and Kps
A represent the mean, standard deviation, and

coefficients of variation, skewness and kurtosis for the number of points in an

advantage set for player A serving first in the set. Let M
ps

T
A , U

ps
T

A , C
ps

T
A , S

ps
T

A

and K
ps

T
A represent the mean, standard deviation, and coefficients of varia-

tion, skewness and kurtosis for the number of points in a tiebreaker set for

player A serving first in the set. Table 3.5 represents Mps
A , Ups

A , Cps
A , Sps

A , Kps
A ,
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pA pB M
ps

T
A U

ps
T

A C
ps

T
A S

ps
T

A K
ps

T
A Mps

A Ups
A Cps

A Sps
A Kps

A

0.50 0.50 65.83 16.54 0.25 0.55 2.96 67.71 21.15 0.31 1.62 7.75
0.50 0.55 64.78 16.43 0.25 0.58 3.01 66.52 20.81 0.31 1.64 7.90
0.50 0.60 61.99 15.97 0.26 0.65 3.18 63.39 19.76 0.31 1.71 8.39
0.50 0.65 58.35 15.03 0.26 0.76 3.49 59.35 18.05 0.30 1.81 9.30
0.50 0.70 54.73 13.75 0.25 0.85 3.88 55.39 16.01 0.29 1.89 10.46
0.50 0.75 51.64 12.44 0.24 0.89 4.20 52.06 14.08 0.27 1.92 11.44
0.55 0.55 65.76 16.40 0.25 0.55 2.93 68.01 21.91 0.32 1.76 8.42
0.55 0.60 64.88 16.08 0.25 0.58 2.96 67.37 22.28 0.33 1.92 9.34
0.55 0.65 62.45 15.51 0.25 0.64 3.10 64.83 21.84 0.34 2.13 10.71
0.55 0.70 59.33 14.64 0.25 0.72 3.34 61.39 20.61 0.34 2.37 12.65
0.55 0.75 56.31 13.60 0.24 0.80 3.63 57.99 18.97 0.33 2.60 14.96
0.60 0.60 65.59 16.03 0.24 0.55 2.82 69.32 24.92 0.36 2.12 10.27
0.60 0.65 64.98 15.56 0.24 0.55 2.80 69.73 26.87 0.39 2.36 11.61
0.60 0.70 63.08 14.99 0.24 0.58 2.85 68.35 27.97 0.41 2.60 13.22
0.60 0.75 60.67 14.32 0.24 0.63 2.95 66.01 28.12 0.43 2.83 14.98
0.65 0.65 65.58 15.55 0.24 0.47 2.56 73.48 33.00 0.45 2.47 11.99
0.65 0.70 65.41 15.00 0.23 0.43 2.45 76.64 38.88 0.51 2.58 12.55
0.65 0.75 64.22 14.49 0.23 0.40 2.40 78.22 43.80 0.56 2.66 13.00
0.70 0.70 66.22 14.96 0.23 0.25 2.19 86.43 53.11 0.61 2.47 11.67
0.70 0.75 66.56 14.22 0.21 0.12 2.13 97.49 68.18 0.70 2.42 11.25
0.75 0.75 67.59 13.74 0.20 -0.15 2.18 125.50 101.81 0.81 2.24 10.22

Table 3.5: The parameters of the distributions of points in a tiebreaker and
advantage set for different values of pA and pB

M
ps

T
A , U

ps
T

A , C
ps

T
A , S

ps
T

A and K
ps

T
A for different values of pA and pB. It can be

observed that:

Mps
A > M

ps
T

A ,

Ups
A > U

ps
T

A ,

Cps
A > C

ps
T

A ,

Sps
A > S

ps
T

A and

Kps
A > K

ps
T

A .

The mean number of points in a set is affected by the mean number of points in

a game and the mean number of games in a set. The mean number of points in a
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game is greatest when pA or pB = 0.50. For a tiebreaker set, when pA = pB = 0.50,

Mpg
A = Mpg

B = 6.75,M
gs

T
A = 9.66 and M

ps
T

A = 65.83. When pA = pB = 0.70, Mpg
A

= Mpg
B = 5.83, M

gs
T

A = 10.94 and M
ps

T
A = 66.22. For this latter case, even though

the mean length of games is shorter, the mean number of points in a tiebreaker

set overall is greater since more games are expected to be played. Both players

have a 0.90 probability of holding serve, which means that very few breaks of

serve will occur and there is a 0.38 probability of reaching a tiebreaker. This is

further exemplified in an advantage set, where for pA = pB = 0.70, Mps
A = 86.43.

This is also highlighted by the coefficients of variation, skewness and kurtosis

being much greater for an advantage set, compared to a tiebreaker set, when pA

and pB are both “large”.

3.6.2 Approximating the parameters of distributions of
the number of points in a set

The moment generating functions for the number of points in a tiebreaker and

advantage set m
ps

T
A (t) and mps

A (t), when pA = 1− pB, become:

m
ps

T
A (t) = [f

gs
T

A (6)](mpg
AB)6+[f

gs
T

A (7)](mpg
AB)7+[f

gs
T

A (8)](mpg
AB)8+[f

gs
T

A (9)](mpg
AB)9+

[f
gs

T
A (10)](mpg

AB)10 + [f
gs

T
A (12)](mpg

AB)12 + [f
gs

T
A (13)](mpg

AB)12m
pg

T
A

mps
A (t) = [f gs

A (6)](mpg
AB)6 + [f gs

A (7)](mpg
AB)7 + [f gs

A (8)](mpg
AB)8 + [f gs

A (9)](mpg
AB)9 +

[f gs
A (10)](mpg

AB)10 +
Ngs

A (5,5)(1−Ngs
A (1,1))(mpg

AB)12

1−Ngs
A (1,1)(mpg

AB)2

where: mpg
AB(t) =

mpg
A (t)+mpg

B (t)

2
is the average of two (in this case equal) moment

generating functions.

The moment generating function, mps
A (t), can be written as:

mps
A (t) = f gs

A (6)e6κpg
AB(t)+f gs

A (7)e7κpg
AB(t)+f gs

A (8)e8κpg
AB(t)+f gs

A (9)e9κpg
AB(t)+f gs

A (10)e10κpg
AB(t)+
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N gs
A (5, 5)e12κpg

AB(t) 1−Ngs
A (1,1)

1−Ngs
A (1,1)e

2κ
pg
AB

(t)

where: κpg
AB(t) =

κpg
A (t)+κpg

B (t)

2
is the average of two (in this case equal) cumulant

generating functions.

This can be expressed as:

mps
A (t) = mgs

A (κpg
AB(t)) (3.6.1)

Similarly, the following result is established for m
ps

T
A (t):

m
ps

T
A (t) = m

gs
T

A (κpg
AB(t)) + N

gs
T

A (6, 6)e12κpg
AB(t)(eκ

pg
T

A (t) − eκpg
AB(t)) (3.6.2)

Notice the last term does not vanish due to the difference in the scoring system

for a tiebreaker game compared with a regular game.

Can we establish the following result?

m
ps

T
A (t) ≈ m

gs
T

A (κpg
AB(t)) + N

gs
T

A (6, 6)e12κpg
AB(t)(eκ

pg
T

A (t)− eκpg
AB(t)), for all pA and pB

Table 3.6 represents a comparison of the exact and approximate results for

the parameters of distributions of points in a tiebreaker set for different values of

pA and pB. A ∼ sign is used to represent the approximate results. Notice that

when pA = pB = 0.5,M
ps

T
A = M̃

ps
T

A , U
ps

T
A = Ũ

ps
T

A , C
ps

T
A = C̃

ps
T

A , S
ps

T
A = S̃

ps
T

A and

K
ps

T
A = K̃

ps
T

A , since pA = 1 − pB. From Table 3.6, it can be observed that the

absolute differences in the means, standard deviations, coefficients of variation,

skewness and kurtosis, are all less than 5%. The following approximation results

are produced for all pA and pB:
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m
ps

T
A (t) ≈ m

gs
T

A (κpg
AB(t)) + N

gs
T

A (6, 6)e12κpg
AB(t)(eκ

pg
T

A (t) − eκpg
AB(t))

mps
A (t) ≈ mgs

A (κpg
AB(t))

pA pB M
ps

T
A M̃

ps
T

A U
ps

T
A Ũ

ps
T

A C
ps

T
A C̃

ps
T

A S
ps

T
A S̃

ps
T

A K
ps

T
A K̃

ps
T

A

0.50 0.50 65.83 65.83 16.54 16.54 0.25 0.25 0.55 0.55 2.96 2.96
0.50 0.55 64.78 64.77 16.43 16.39 0.25 0.25 0.58 0.58 3.01 3.01
0.50 0.60 61.99 61.95 15.97 15.87 0.26 0.26 0.65 0.66 3.18 3.20
0.50 0.65 58.35 58.27 15.03 14.90 0.26 0.25 0.76 0.76 3.49 3.52
0.50 0.70 54.73 54.59 13.75 13.66 0.25 0.25 0.85 0.85 3.88 3.90
0.50 0.75 51.64 51.43 12.44 12.46 0.24 0.24 0.89 0.89 4.20 4.20
0.55 0.55 65.76 65.76 16.40 16.43 0.25 0.25 0.55 0.55 2.93 2.93
0.55 0.60 64.88 64.85 16.08 16.13 0.25 0.25 0.58 0.57 2.96 2.96
0.55 0.65 62.45 62.38 15.51 15.57 0.25 0.25 0.64 0.64 3.10 3.10
0.55 0.70 59.33 59.23 14.64 14.75 0.25 0.25 0.72 0.72 3.34 3.35
0.55 0.75 56.31 56.16 13.60 13.83 0.24 0.25 0.80 0.80 3.63 3.62
0.60 0.60 65.59 65.59 16.03 16.15 0.24 0.25 0.55 0.54 2.82 2.82
0.60 0.65 64.98 64.94 15.56 15.75 0.24 0.24 0.55 0.54 2.80 2.79
0.60 0.70 63.08 63.01 14.99 15.26 0.24 0.24 0.58 0.57 2.85 2.85
0.60 0.75 60.67 60.58 14.32 14.70 0.24 0.24 0.63 0.62 2.95 2.95
0.65 0.65 65.58 65.58 15.55 15.80 0.24 0.24 0.47 0.47 2.56 2.55
0.65 0.70 65.41 65.38 15.00 15.37 0.23 0.23 0.43 0.41 2.45 2.44
0.65 0.75 64.22 64.16 14.49 14.97 0.23 0.23 0.40 0.38 2.40 2.39
0.70 0.70 66.22 66.22 14.96 15.38 0.23 0.23 0.25 0.24 2.19 2.17
0.70 0.75 66.56 66.53 14.22 14.74 0.21 0.22 0.12 0.11 2.13 2.10
0.75 0.75 67.59 67.59 13.74 14.26 0.20 0.21 -0.15 -0.17 2.18 2.13

Table 3.6: A comparison of the exact and approximate results for the parameters
of the distributions of points in a tiebreaker set for different values of pA and pB

3.7 Points in a match

The moment generating functions for the number of points in an advantage and

tiebreaker match, mpm(t) and mpm
T (t), when pA = 1− pB become:

mpm
T (t) = msm(κ

ps
T

AB (t))

mpm(t) = msm(κ
ps

T
AB (t)) + N sm(2, 2)e4κ

ps
T

AB (t)(eκps
AB(t) − eκ

ps
T

AB (t))
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where: κ
ps

T
AB (t) =

κ
ps

T
A (t)+κ

ps
T

B (t)

2
and κps

AB(t) =
κps

A (t)+κps
B (t)

2

The main reason for establishing approximation results for points in a set, is

to apply these results to points in match, where the exact results are tedious to

formulate. The following results are produced:

mpm
T (t) ≈ msm(κ

ps
T

AB (t)) for all values of pA and pB.

mpm(t) ≈ msm(κ
ps

T
AB (t)) + N sm(2, 2)e4κ

ps
T

AB (t)(eκps
AB(t) − eκ

ps
T

AB (t)) for all values of pA

and pB.

Approximation results for distributions of points in a match, could also be

established for tennis doubles by using the above results established for singles.

The probability of a team winning a point on serve is estimated by the averages

of the two players in the team.

When pA = 1 − pB, the number of points played each set if player A serves

first in the set, is equal to the number of points played each set if player B serves

first in the set. This leads to the following result:

The number of points played each set in a match are independent, if pA = 1−pB.

Suppose X = Y + Z, where Y and Z are independent, then it is well known

that mX(t) = E[eXt] = E[eY t]E[eZt] = mY (t)mZ(t). By taking logarithms it

follows that κX(t) = κY (t) + κZ(t).

An extension of this property of cumulants is given by the following theory

(Brown [9]) and can be applied to points in a tiebreaker match when the number

of points played each set in a match are independent. When the independence

assumption fails to hold the theory remains approximately correct according to

the approximation result established for points in a tiebreaker match.
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Theorem 3.7.1. If Z = X1 + X2 + ....... + XN where Xi are i.i.d. then κZ(t) =
κN(κX(t))

Taking the derivatives of the result we get the following:

κ
(1)
Z (t) = κ

(1)
N (κX(t))κ

(1)
X (t)

κ
(2)
Z (t) = κ

(2)
N (κX(t))κ

(1)
X (t)2 + κ

(1)
N (κX(t))κ

(2)
X (t)

κ
(3)
Z (t) = 3κ

(1)
X (t)κ

(2)
N (κX(t))κ

(2)
X (t) + κ

(1)
X (t)3κ

(3)
N (κX(t)) + κ

(1)
N (κX(t))κ

(3)
X (t)

κ
(4)
Z (t) = 3κ

(2)
N (κX(t))κ

(2)
X (t)2+6κ

(1)
X (t)2κ

(2)
X (t)κ

(3)
N (κX(t))+4κ

(1)
X (t)κ

(2)
N (κX(t))κ

(3)
X (t)+

κ
(1)
X (t)4κ

(4)
N (κX(t)) + κ

(1)
N (κX(t))κ

(4)
X (t)

Setting t = 0 and representing superscript (1), (2), (3) and (4) by subscript 1, 2,

3 and 4 respectively, produces the following useful results in terms of cumulants:

κ1Z = κ1Nκ1X

κ2Z = κ2Nκ2
1X + κ1Nκ2X

κ3Z = 3κ1Xκ2Nκ2X + κ3
1Xκ3N + κ1Nκ3X

κ4Z = 3κ2Nκ2
2X + 6κ2

1Xκ2Xκ3N + 4κ1Xκ2Nκ3X + κ4
1Xκ4N + κ1Nκ4X

3.7.1 Mean number of points in a tiebreaker match

Since either player can be serving first in the match, subscripts A and B, rep-

resenting players A and B serving respectively, have been omitted. The mean

number of points in a tiebreaker match, Mpm
T , can be represented by:

Mpm
T = κ1Z = κ1Xκ1N

Now κ1X = Mps
T and κ1N = M sm

Therefore:

Mpm
T = Mps

T M sm
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3.7.2 Variance of the number of points in a tiebreaker
match

The variance of the number of points in a tiebreaker match, V pm
T , can be repre-

sented by:

V pm
T = κ2Z = κ2Nκ2

1X + κ1Nκ2X

Now κ1X = Mps
T , κ1N = M sm, κ2X = V ps

T and κ2N = V sm

Therefore:

V pm
T = V sm(Mps

T )2 + M smV ps
T

3.7.3 Coefficient of skewness of the number of points in a
tiebreaker match

The coefficient of skewness of the number of points in a tiebreaker match, Spm
T ,

can be represented by:

Spm
T = κ3Z

(κ2Z)
3
2

=
3κ1Xκ2Nκ2X+κ3

1Xκ3N+κ1Nκ3X

(κ2Z)
3
2

Now κ1X = Mps
T , κ1N = M sm, κ2X = V ps

T , κ2N = V sm, κ3X = Sps
T and κ3N =

Ssm

Therefore:

Spm
T =

3Mps
T V smV ps

T + (Mps
T )3Ssm + M smSps

T

(V pm
T )

3
2

3.7.4 Coefficient of kurtosis of the number of points in a
tiebreaker match

The coefficient of kurtosis of the number of points in a tiebreaker match, Kpm
T ,

can be represented by:
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Kpm
T = κ4Z

(κ2Z)2
+ 3 =

3κ2Nκ2
2X+6κ2

1Xκ2Xκ3N+4κ1Xκ2Nκ3X+κ4
1Xκ4N+κ1Nκ4X

(κ2Z)2
+ 3

Now κ1X = Mps
T , κ1N = M sm, κ2X = V ps

T , κ2N = V sm, κ3X = Sps
T , κ3N =

Ssm, κ4X = Kps
T and κ4N = Ksm

Therefore:

Kpm
T = 3V sm(V ps

T )2+6(Mps
T )2V ps

T Ssm+4Mps
T V smSps

T +(Mps
T )4Ksm+MsmKps

T

(V pm
T )2

+ 3

The calculation of these parameters of the distributions for a match can be

used in asymptotic formulae (Stuart and Ord [70]) for calculating the probabilities

of the match going beyond a given number of points.

3.7.5 Time duration in a match

The amount of time to play each point also has a distribution, that may differ

depending on the surface, tournament, players etc. Let X represent the amount

of time to play each point and the amount of time between points (this includes

the time taken between the change of ends). Assuming that each X in a match

is i.i.d. (which is assuming that pA and pB are about the same) and delays such

as rain delays and injury time-outs are not considered, Theorem 3.7.1 can be

applied to calculate the parameters of the distributions of the time duration in

a match. For example, if N represents the number of points in a match and Z

represents the time duration in the match, then from Theorem 3.7.1, the mean

time of the match can be calculated by κ1Z = κ1Xκ1N .

3.8 Summary

In this chapter, the parameters of the distributions have been calculated for points

in a regular and tiebreaker game, games in an advantage and tiebreaker set, sets in
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an advantage and tiebreaker match, points in an advantage and tiebreaker set and

points in an advantage and tiebreaker match. Since the number of points played

each set in a tiebreaker match when pA = 1 − pB are i.i.d., simplified formulas

are used for determining the parameters of the distributions for a tiebreaker

match, and approximation results are obtained for unequal players. Similarly,

these formulas can also be used to calculate the parameters of the distributions

for the time duration in a match.

While the underlying model developed in Chapter 2 was used to calculate some

obvious statistics such as probabilities of winning and expected mean lengths,

more sophisticated methods have been developed in this chapter to enable the

calculation of higher order moments, which give numerical values to the coeffi-

cients of skewness and kurtosis.



Chapter 4

IMPORTANCE AND

WEIGHTED-IMPORTANCE

4.1 Introduction

In an elegant paper, Morris [50] defined the concept of importance and time-

importance. Weighted-importance is introduced in this chapter as a generaliza-

tion of time-importance. The theorems and equations developed by Morris [50]

for time-importance are now given in terms of weighted-importance. Pollard [58]

formulated theorems and equations that extended and gave alternative deriva-

tions to the work of Morris [50]. These are also re-presented in the context of

weighted-importance. A useful relationship between the importance of points and

the conditional probabilities of players winning a match is established, demon-

strating that the differences in the probabilities of winning a match are more

likely to be greater at important points than at unimportant points.

73
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4.2 Importance

Morris [50] defines the importance of a point to winning the game, Ipg(a, b), as

the probability that the server wins the game given that he wins the point, minus

the probability that he wins the game given that he loses the point. When player

A is serving this is represented by:

Ipg
A (a, b) = P pg

A (a + 1, b)− P pg
A (a, b + 1)

Morris [50] states that since the receiver’s probabilities are the complements

of the server’s, the same value of numerical importance would apply for all point

scores in the game. Hence each point is equally important to both players.

Similarly, the importance of the game to winning an advantage set when the

score is (c, d), is given by:

Igs
A (c, d) = P gs

B (c + 1, d)− P gs
B (c, d + 1), if player A is serving

Igs
B (c, d) = P gs

A (c + 1, d)− P gs
A (c, d + 1), if player B is serving

Similar formulas on importance can be produced for all levels of nesting that

exist in tennis.

The following theorem can be easily proved:

Theorem 4.2.1. The importance of every point in a game is non-negative.

Proof. Ipg(a, b) = P pg(a+ 1, b)−P pg(a, b + 1). Now P pg(a+ 1, b) > P pg(a, b + 1),

since a player increases his chance of winning the game by winning a point at

(a, b), and decreases his chance of winning the game by losing a point at (a, b).

Therefore Ipg(a, b) = P pg(a + 1, b)− P pg(a, b + 1) > 0.
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Similar proofs can be obtained for all levels of nesting in tennis to show non-

negativity of importance at that level.

It is well documented (Croucher [18]) that 30− 40 and advantage receiver are

the most important points in a game if the probability the server wins a point

on serve is greater than 0.5, and that 40− 30 and advantage server are the most

important points in a game if the probability the server wins a point on serve is

less than 0.5. When the probabilities of both players winning a point in a game are

equal to 0.5, the most important points occur at 30− 30, 30− 40, 40− 30, deuce,

advantage server and advantage receiver. The importance of all these points

in the game is equal to 0.5. For example: Ipg(2, 2) = P pg(3, 2) − P pg(2, 3) =

0.75− 0.25 = 0.5

Similar results can be obtained for a tiebreaker game where the most impor-

tant points occur where the weaker player is one point away from winning the

game and the scores differ by one point. Similarly for an advantage set, the most

important games occur where the weaker player is one game away from winning

the set and the scores differ by one game.

In a tiebreaker set a sudden death tiebreaker game is played at 6 games-all.

For this reason the most important game in a tiebreaker set is at 6 games-all,

where the importance is equal to 1. Similarly for a best-of-5 set advantage or

tiebreaker match, a sudden death tiebreaker or advantage set is played at 2 sets-

all. For this reason the most important set in a match is at 2 sets-all, where the

importance is also equal to 1.

Let (a, b : c, d : e, f) represent the full scoreboard that exists in a tennis

match, where (a, b) is point score, (c, d) is game score and (e, f) is set score. It

follows that P pm
A (a, b : c, d : e, f) represents the conditional probability of player
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A winning the advantage match, from point, game and set score (a, b : c, d : e, f)

with player A serving. Ipm
A (a, b : c, d : e, f) represents the importance of a point

to winning an advantage match from point, game and set score (a, b : c, d : e, f)

with player A serving.

Morris [50] stated that the importance of any point in a match is equal to the

product of the importance of the point in the game, the importance of the game

in the set and the importance of the set in the match. Algebraically, this can be

represented by the following equations when player A is currently serving in the

match:

I
pm

T
A (a, b : c, d : e, f) = Ipg

A (a, b)I
gs

T
A (c, d)I

sm
T

A (e, f), if (c, d) 6= (6, 6)

I
pm

T
A (a, b : c, d : e, f) = I

pg
T

A (a, b)I
gs

T
A (c, d)I

sm
T

A (e, f), if (c, d) = (6, 6)

Ipm
A (a, b : c, d : e, f) = Ipg

A (a, b)I
gs

T
A (c, d)Ism

A (e, f), if (c, d) 6= (6, 6) and (e, f) 6=
(2, 2)

Ipm
A (a, b : c, d : e, f) = I

pg
T

A (a, b)I
gs

T
A (c, d)Ism

A (e, f), if (c, d) = (6, 6) and (e, f) 6=
(2, 2)

Ipm
A (a, b : c, d : e, f) = Ipg

A (a, b)Igs
A (c, d)Ism

A (e, f), if (e, f) = (2, 2)

Importance is a natural measure of sensitivity of the probability of winning

to changes in the state of the system as given by the following theorem.

Theorem 4.2.2. If p is the probability that player A wins a point in state (a, b :

c, d : e, f), then the importance of a point to winning the match is equal to

∂P pm(a,b:c,d:e,f)
∂p

Proof. P pm(a, b : c, d : e, f) = P pm(a + 1, b : c, d : e, f)p + P pm(a, b + 1 : c, d :

e, f)(1 − p) Taking the partial derivative ∂P pm(a,b:c,d:e,f)
∂p

= P pm(a + 1, b : c, d :
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e, f) − P pm(a, b + 1 : c, d : e, f), which is the importance of a point to winning

the match

The importance of a tiebreaker set to winning a best-of-3 set tiebreaker match

can be written as:

Ism
3T (e, f) = [P sm

3T (e + 1, f)−P sm
3T (e, f)] + [P sm

3T (e, f)−P sm
3T (e, f + 1)]

Let:

I
sm

3T
W (e, f) = P sm

3T (e + 1, f)− P sm
3T (e, f) (4.2.1)

I
sm

3T
L (e, f) = P sm

3T (e, f)− P sm
3T (e, f + 1) (4.2.2)

The importance of a tiebreaker set (e, f) can then be defined as:

Ism
3T (e, f) = I

sm
3T

W (e, f) + I
sm

3T
L (e, f)

Suppose we are at (e, f) in a best-of-3 set tiebreaker match, then Equa-

tion 4.2.1 represents the increased probability of winning the match if player A

wins the next set from (e, f). Similarly Equation 4.2.2 represents the decreased

probability of winning the match if player A loses the next set from (e, f).

Set score Ism
3T (e, f) I

sm
3T

W (e, f) I
sm

3T
L (e, f)

(1, 1) 1 1− ps
T ps

T

(0, 1) ps
T ps

T (1− ps
T ) (ps

T )2

(0, 0) 2ps
T (1− ps

T ) 2ps
T (1− ps

T )2 2(ps
T )2(1− ps

T )
(1, 0) 1− ps

T (1− ps
T )2 ps

T (1− ps
T )

Table 4.1: The importance of sets in a best-of-3 set tiebreaker match with the
corresponding I

sm
3T

W (e, f) and I
sm

3T
L (e, f)



78

Table 4.1 represents the importance of sets in a best-of-3 set tiebreaker match

with the corresponding I
sm

3T
W (e, f) and I

sm
3T

L (e, f). For ps
T ≥ 1

2
, Ism

3T (e, f) are

ordered in decreasing order of importance. It can be observed that I
sm

3T
W (e, f)

and I
sm

3T
L (e, f) are also ordered in decreasing order of importance when ps

T ≥ 1
2
.

This leads to the following theorems:

Theorem 4.2.3. If Ism
3T (e, f) are ordered by size, then the corresponding I

sm
3T

W (e, f)

and I
sm

3T
L (e, f) are also ordered by size.

Proof. I
sm

3T
W (e, f) = Ism

3T (e, f)(1− ps
T ) and I

sm
3T

L (e, f) = Ism
3T (e, f)ps

T for all

(e, f). Since ps
T is a constant, the theorem must hold.

Theorem 4.2.4. I
sm

3T
W (e, f) ≤ I

sm
3T

L (e, f) for all (e, f) when ps
T ≥ 1

2
and

I
sm

3T
W (e, f) ≥ I

sm
3T

L (e, f) for all (e, f) when ps
T ≤ 1

2
.

Proof. I
sm

3T
W (e, f) = Ism

3T (e, f)(1 − ps
T ) ≤ I

sm
3T

L (e, f), when 1 − ps
T ≤ ps

T , or

equivalently when ps
T ≥ 1

2
. Similarly I

sm
3T

L (e, f) = Ism
3T (e, f)ps

T ≥ I
sm

3T
L (e, f),

when 1− ps
T ≥ ps

T , or equivalently when ps
T ≤ 1

2
.

Let Ipg
W (a, b) = P pg(a+1, b)−P pg(a, b) and Ipg

L (a, b) = P pg(a, b)−P pg(a, b+1).

Table 4.2 represents the importance of points in a game for p = 0.60, in decreasing

order of importance. It can be observed that Ipg
W (a, b) and Ipg

L (a, b) are greatest

at (2, 3), which is the most important point in a game. This means that whilst

playing a game the greatest differences to the outcome of the game will occur at

the most important point in a game regardless of which player wins the point.

This means that it is critical to win this point, since it will make a dramatic

difference to the outcome of the game. It can also be observed that larger values

of Ipg
W (a, b) and Ipg

L (a, b) are more likely to occur at important points, than at

unimportant points.
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Point score Ipg(a, b) Ipg
W (a, b) Ipg

L (a, b)
(2,3) 0.69 0.277 0.415
(2,2) 0.46 0.185 0.277
(1,2) 0.44 0.177 0.266
(1,3) 0.42 0.166 0.249
(0,2) 0.37 0.146 0.219
(0,1) 0.35 0.138 0.207
(1,1) 0.33 0.133 0.199
(3,2) 0.31 0.123 0.185
(0,0) 0.27 0.106 0.160
(2,1) 0.26 0.103 0.155
(0,3) 0.25 0.100 0.150
(1,0) 0.21 0.085 0.128
(2,0) 0.13 0.053 0.080
(3,1) 0.12 0.049 0.074
(3,0) 0.05 0.020 0.030

Table 4.2: The importance of points in a game for p = 0.60 with the corresponding
Ipg
W (a, b) and Ipg

L (a, b)

Let:

Ipm
W (a, b : c, d : e, f) = P pm(a + 1, b : c, d : e, f)− P pm(a, b : c, d : e, f)

Ipm
L (a, b : c, d : e, f) = P pm(a, b : c, d : e, f)− P pm(a, b + 1 : c, d : e, f)

Theorem 4.2.5. The differences in the probabilities of winning a match,

Ipm
W (a, b : c, d : e, f) and Ipm

L (a, b : c, d : e, f), are more likely to be greater at

important points than at unimportant points.

Proof. It has been shown that the differences in the probabilities of winning a

game are more likely to be greater at important points than at unimportant

points. Similarly, it can be shown that the differences in the probabilities of

winning a set are more likely to be greater at important games and than at

unimportant games, and the differences in the probabilities of winning a match

are more likely to be greater at important sets than at unimportant sets. The
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proof follows from the multiplication result of importance (Equation 1.3.1).

4.3 Weighted-importance

Let Epg
A (a, b|g, h) represent the expected number of times the point (a, b) is played

in a game from point score (g, h) for player A serving. Epg
A (3, 2|g, h) includes

the states (3, 2) and advantage server, since the probability of a player winning

from state (3, 2) is the same as the probability of the same player winning from

advantage server. In comparison, Npg
A (3, 2|0, 0) only includes the state (3, 2).

Morris [50] defined the time-importance of a point in a game. We introduce

the definition of weighted-importance as a generalization of time-importance.

The formulas for time-importance and weighted-importance of a point in a game

for player A serving are:

T pg
A (a, b|0, 0) = Ipg

A (a, b)Epg
A (a, b|0, 0)

W pg
A (a, b|g, h) = Ipg

A (a, b)Npg
A (a, b|g, h)

where: T pg
A (a, b|0, 0) is the time-importance of point (a, b) in a game from point

score (g = 0, h = 0) for player A serving and W pg
A (a, b|g, h) is the weighted-

importance of point (a, b) in a game from point score (g, h) for player A serving.

The generalization from time-importance to weighted-importance comes about

by allowing (g, h) to take on any values in the game. For time-importance,

(g, h) remains fixed at (0, 0) for the entire game. The reason for working with

W pg
A (a, b|g, h) as opposed to using T pg

A (a, b|g, h), will become apparent in the next

chapter on tennis strategies. There is a slight inconsistency in the work of Mor-

ris [50], since he considers (2, 2) and (3, 3) as different states in the game, when the

chance of winning the game for a player from either state is the same. It becomes
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convenient when (g = 0, h = 0), to let W pg
A (a, b|g = 0, h = 0) = W pg

A (a, b).

Let W gs
A (c, d|i, j) be the weighted-importance of game (c, d) in an advantage set

from game score (i, j) for player A serving at (c, d). This is represented by:

W gs
A (c, d|i, j) = Igs

A (c, d)N gs
A (c, d|i, j)

Since the player who is serving at (i, j) can be determined from who is cur-

rently serving at (c, d) in a set, it was not necessary to refer to the player serving

at (i, j). However, for the calculation of weighted-importance of points in a

match, data on which player is serving at (g, h : i, j : k, l) and which player will

be serving at (a, b : c, d : e, f) are necessary.

Let W pm
A,B(a, b : c, d : e, f |g, h : i, j : k, l) represent the weighted-importance of

points in an advantage match when player B starts serving at (g, h : i, j : k, l)

and player A is serving at (a, b : c, d : e, f). It follows that:

W pm
A,B(a, b : c, d : e, f |g, h : i, j : k, l)

= Ipm
A (a, b : c, d : e, f)Npm

A,B(a, b : c, d : e, f |g, h : i, j : k, l)

where: Npm
A,B(a, b : c, d : e, f |g, h : i, j : k, l) represents the probability of reaching

(a, b : c, d : e, f) in an advantage match from point, game and set score (g, h :

i, j : k, l), with player A serving at (a, b : c, d : e, f), and player B serving at

(g, h : i, j : k, l).

Similar equations for weighted-importance can be produced for all levels of nesting

that exist in tennis.

Theorem 4.3.1. W pg
A (a, b|g = a, h = b) = Ipg

A (a, b)

Proof. W pg
A (a, b|g = a, h = b) = Ipg

A (a, b)Npg
A (a, b|g = a, h = b) = Ipg

A (a, b)
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Theorems like 4.3.1 hold for all levels of nesting in tennis

Theorem 4.3.2. W sm(e, f |k, l) = W sm(k − e, l − f |k = 0, l = 0)

Proof. W sm(e, f |k, l) = Ism(e, f)N sm(e, f |k, l)

= Ism(e, f)N sm(k − e, l − f |k = 0, l = 0) = W sm(k − e, l − f |k = 0, l = 0)

Note that W sm(e, f |k, l) = W sm
A,B(e, f |k, l) + W sm

B,B(e, f |k, l) for all (e, f |k, l).

Let W sm
3T (e, f) represent the weighted-importance of set (e, f) in a best-of-3

set tiebreaker match from set score (0, 0). Table 4.3 represents the weighted-

importance of sets in a best-of-3 set tiebreaker match from set score (0, 0) and

notice that W sm
3T (0, 0), W sm

3T (1, 1) and W sm
3T (1, 0) + W sm

3T (0, 1) all equal

2ps
T (1− ps

T ).

B score
0 1

A score 0 2ps
T (1− ps

T ) ps
T (1− ps

T )
1 ps

T (1− ps
T ) 2ps

T (1− ps
T )

Table 4.3: The weighted-importance of sets in a best-of-3 set tiebreaker match
from (0, 0)

Let N
pm

T
A,B (a, b : c, d : e, f) represent the probabilities of reaching a point, game

and set score (a, b : c, d : e, f) in a tiebreaker match from point, game and set score

(0, 0 : 0, 0 : 0, 0) for player A serving at (a, b : c, d : e, f), and player B serving at

(0, 0 : 0, 0 : 0, 0). Let Npm
A,B(a, b : c, d : e, f) represent the probabilities of reaching

a point, game and set score (a, b : c, d : e, f) in an advantage match from point,

game and set score (0, 0 : 0, 0 : 0, 0) for player A serving at (a, b : c, d : e, f), and

player B serving at (0, 0 : 0, 0 : 0, 0).
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Then:

N
pm

T
A,B (a, b : c, d : e, f) = Npg

A (a, b)N
gs

T
A (c, d)N

sm
T

A,B (e, f), if (c + d) mod 2 =0 and

(c, d) 6= (6, 6)

N
pm

T
A,B (a, b : c, d : e, f) = Npg

A (a, b)N
gs

T
A (c, d)N

sm
T

B,B (e, f), if (c + d) mod 2 6= 0 and

(c, d) 6= (6, 6)

N
pm

T
A,B (a, b : c, d : e, f) = N

pg
T

A (a, b)N
gs

T
A (c, d)N

sm
T

A,B (e, f), if (a+b) = 0, 3, 4, 7, 8....

and (c, d) = (6, 6)

N
pm

T
A,B (a, b : c, d : e, f) = N

pg
T

A (a, b)N
gs

T
B (c, d)N

sm
T

B,B (e, f), if (a + b) = 1, 2, 5, 6....

and (c, d) = (6, 6)

Npm
A,B(a, b : c, d : e, f) = Npg

A (a, b)N
gs

T
A (c, d)N sm

A,B(e, f), if (c + d) mod 2 =0,

(c, d) 6= (6, 6) and e, f ≤ 2

Npm
A,B(a, b : c, d : e, f) = Npg

A (a, b)N
gs

T
A (c, d)N sm

B,B(e, f), if (c + d) mod 2 6= 0,

(c, d) 6= (6, 6) and e, f ≤ 2

Npm
A,B(a, b : c, d : e, f) = N

pg
T

A (a, b)N
gs

T
A (c, d)N sm

A,B(e, f), if (a+b) = 0, 3, 4, 7, 8...., (c, d) =

(6, 6) and e, f ≤ 2

Npm
A,B(a, b : c, d : e, f) = N

pg
T

A (a, b)N
gs

T
B (c, d)N sm

B,B(e, f), if (a+b) = 1, 2, 5, 6...., (c, d) =

(6, 6) and e, f ≤ 2

Npm
A,B(a, b : c, d : e, f) = Npg

A (a, b)N gs
A (c, d)N sm

A,B(e, f), if (c+d) mod 2 =0, (e, f) =

(3, 2) or (2, 3)

Npm
A,B(a, b : c, d : e, f) = Npg

A (a, b)N gs
A (c, d)N sm

B,B(e, f), if (c + d) mod 2 6= 0,

(e, f) = (3, 2) or (2, 3)

Note that four equations are necessary for a tiebreaker match, and six equa-

tions are necessary for an advantage match, due to the different types of games

(regular or tiebreaker) and sets (advantage or tiebreaker) that exist in tennis. If

the type of games and sets used in the match were identically distributed for the
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entire match, then only two equations would be required. This is the case in a

match where all the sets played are advantage sets.

Let Npm
A,B(a, b : c, d : e, f |g, h : i, j : k, l) represent the probability of reaching

(a, b : c, d : e, f) in an advantage match from point, game and set score (g, h :

i, j : k, l), with player A serving at (a, b : c, d : e, f), and player B serving at

(g, h : i, j : k, l). The equation for Npm
A,B(a, b : c, d : e, f |g, h : i, j : k, l) when

(e, f) = (3, 2) or (2, 3) is represented below.

Npm
A,B(a, b : c, d : e, f |g, h : i, j : k, l)

= Npm
A,B(0, 0 : 0, 0 : e, f |g, h : i, j : k, l)N gs

A (c, d)Npg
A (a, b)

= P pg
B (g, h)P gs

A (i + 1, j)[x1N
sm
A,A(e, f |k + 1, l) + (1− x1)N

sm
A,B(e, f |k + 1, l)]

+P pg
B (g, h)[1− P gs

A (i + 1, j)][x2N
sm
A,A(e, f |k, l + 1) + (1− x2)N

sm
A,B(e, f |k, l + 1)]

+[1− P pg
B (g, h)]P gs

A (i, j + 1)[x3N
sm
A,A(e, f |k + 1, l) + (1− x3)N

sm
A,B(e, f |k + 1, l)]

+[1−P pg
B (g, h)][1−P gs

A (i, j +1)][x4N
sm
A,A(e, f |k, l+1)+(1−x4)N

sm
A,B(e, f |k, l+1)]

N gs
A (c, d)Npg

A (a, b), if (c + d) mod 2 =0

Npm
A,B(a, b : c, d : e, f |g, h : i, j : k, l)

= [Npm
B,B(0, 0 : 0, 0 : e, f |g, h : i, j : k, l)N gs

A (c, d)Npg
A (a, b)

= P pg
B (g, h)P gs

A (i + 1, j)[x1N
sm
B,A(e, f |k + 1, l) + (1− x1)N

sm
B,B(e, f |k + 1, l)]

+P pg
B (g, h)[1− P gs

A (i + 1, j)][x2N
sm
B,A(e, f |k, l + 1) + (1− x2)N

sm
B,B(e, f |k, l + 1)]

+[1− P pg
B (g, h)]P gs

A (i, j + 1)[x3N
sm
B,A(e, f |k + 1, l) + (1− x3)N

sm
B,B(e, f |k + 1, l)]

+[1−P pg
B (g, h)][1−P gs

A (i, j +1)][x4N
sm
B,A(e, f |k, l+1)+(1−x4)N

sm
B,B(e, f |k, l+1)]

N gs
A (c, d)Npg

A (a, b), if (c + d) mod 2 6= 0

where:

x1 is the probability that player A is serving at (k + 1, l) given that player A was

serving and won the set from (i + 1, j)
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x2 is the probability that player A is serving at (k, l + 1) given that player A was

serving and lost the set from (i + 1, j)

x3 is the probability that player A is serving at (k + 1, l) given that player A was

serving and won the set from (i, j + 1)

x4 is the probability that player A is serving at (k, l + 1) given that player A was

serving and lost the set from (i, j + 1)

Similar equations can be obtained for when (c, d) 6= (6, 6) and e, f ≤ 2, and

(c, d) = (6, 6) and e, f ≤ 2. Likewise, a general equation can be obtained for

calculating N
pm

T
A,B (a, b : c, d : e, f |g, h : i, j : k, l).

The following theorem was presented by Morris [50] for time-importance.

Theorem 4.3.3. Suppose player A, who ordinarily has probability p of winning

a point on serve, decides that he will try harder every time the point (a, b) occurs.

If by doing so he is able to raise his probability of winning from p to p + ε,

(p+ ε < 1) for that point alone, then he raises his probability of winning the game

from P pg(0, 0) to P pg(0, 0) + εT pg(a, b|0, 0).

Theorem 4.3.3 is now generalized for weighted-importance.

Theorem 4.3.4. Suppose player A, who ordinarily has probability p of winning

a point on serve, decides that he will try harder every time the point (a, b) occurs.

If by doing so he is able to raise his probability of winning from p to p + ε,

(p+ ε < 1) for that point alone, then he raises his probability of winning the game

from P pg(g, h) to P pg(g, h) + εW pg(a, b|g, h).

Proof. A proof can easily be obtained for a best-of-3 set tiebreaker match by cal-

culating P sm
3T (k, l) and W sm

3T (e, f |k, l) for all (e, f |k, l). It follows with similar

techniques for a game and all levels of nesting in tennis.
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Because Npg(a, b|g = a, h = b) = 1, Theorem 4.3.5 arises as a special case

of Theorem 4.3.4. Once again, similar theorems can be obtained for all levels of

nesting in tennis.

Theorem 4.3.5. Suppose player A, who ordinarily has probability p of winning

a point on serve, decides that he will try harder every time the point (a, b) occurs.

If by doing so he is able to raise his probability from p to p + ε, (p + ε < 1) for

that point alone then he raises his probability of winning the game from P pg(a, b)

to P pg(a, b) + εIpg(a, b).

The following equation is represented by Morris [50] for time-importance.

∑

(a,b)

T pg(a, b|0, 0) =
dP pg(0, 0)

dp
(4.3.1)

Equation 4.3.1 is now generalized for weighted-importance.

∑

(a,b)

W pg(a, b|g, h) =
dP pg(g, h)

dp
(4.3.2)

Proof. The proof is obtained similarly to Theorem 4.3.4.

Pollard [58] generalized Theorem 4.3.3 as follows:

Let p(a,b) + ε(a,b) be the probability that player A wins a point on serve in

state (a, b). Let P pg(0, 0) be the overall probability that player A wins when all

ε(a,b) = 0. For any set of values ε(a,b) {p(a,b) + ε(a,b) < 1 for all (a, b)}, suppose

P̃ pg(0, 0) is the overall probability that player A wins from point score (0, 0) and
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T pg(a, b|0, 0) is the time-importance of state (a, b) in a game from point score

(0, 0). Defining ∆P pg(0, 0) = P̃ pg(0, 0)− P pg(0, 0), it follows that:

∆P pg(0, 0) =
∑

all (a,b)

T pg(a, b|0, 0)ε(a,b) (4.3.3)

Equation 4.3.3 is now generalized for weighted-importance.

Let p(a,b) + ε(a,b) be the probability that player A wins a point on serve in

state (a, b). Let P pg(g, h) be the overall probability that player A wins when all

ε(a,b) = 0. For any set of values ε(a,b) {p(a,b) + ε(a,b) < 1 for all (a, b)}, suppose

P̃ pg(g, h) is the overall probability that player A wins from point score (g, h) and

W pg(a, b|g, h) is the weighted-importance of state (a, b) in a game from point

score (g, h). Defining ∆P pg(g, h) = P̃ pg(g, h)− P pg(g, h), it follows that:

∆P pg(g, h) =
∑

all (a,b)

W pg(a, b|g, h)ε(a,b) (4.3.4)

Proof. The proof is obtained similarly to Theorem 4.3.4.

If player A raises their probability of winning at only one state (a, b) then

Equation 4.3.4 becomes: ∆P pg(g, h) = W pg(a, b|g, h)ε(a,b), which is equivalent to

Theorem 4.3.4, as expected.

Pollard [58] gave an alternative formulation to Theorem 4.3.3 as follows:

Theorem 4.3.6. Suppose player A, who ordinarily has probability p of winning

a point on serve, decides that he will try harder every time the point (a, b) occurs.

If by doing so he is able to raise his probability of winning from p to p + ε,

(p+ ε < 1) for that point alone, then he raises his probability of winning the game

from P pg(0, 0) to P pg(0, 0) + ε∂P pg(0,0)
∂p(a,b)

.
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Theorem 4.3.6 is now generalized to include all point scores (g, h).

Theorem 4.3.7. Suppose player A, who ordinarily has probability p of winning

a point on serve, decides that he will try harder every time the point (a, b) occurs.

If by doing so he is able to raise his probability of winning from p to p + ε,

(p+ ε < 1) for that point alone, then he raises his probability of winning the game

from P pg(g, h) to P pg(g, h) + ε∂P pg(g,h)
∂p(a,b)

.

Proof. The proof is obtained similarly to Theorem 4.3.4.

It follows from Theorem 4.3.5 and Theorem 4.3.7 that ∂P pg(g=a,h=b)
∂p(a,b)

= Ipg(a, b),

which is the same result obtained in Theorem 4.2.2.

4.4 Summary

The concept of weighted-importance has been established, as a generalization

of the definition of time-importance (Morris [50]). Theorems and equations for

time-importance have been re-defined in terms of weighted-importance. A rela-

tionship between the importance of points and the conditional probabilities of

players winning a match is established. The results presented in this chapter

have applications to tennis strategies (Chapter 5), forecasting during a match in

progress (Chapter 7) and warfare strategies (Chapter 9).



Chapter 5

TENNIS STRATEGIES

5.1 Introduction

Brimberg et al. [5] model a decision where a player must allocate limited energy

over a contest of uncertain length. They solve for the optimal decision using dy-

namic programming. Their model assumes a constant probability for the entire

match, which is independent of serve. Pollard [58] formulated a model for deter-

mining an optimal strategy on when a player is able to increase their probability

of winning a point in a game, a game in a set, or a set in a match, given they have

a finite number of increases in effort available throughout the game, set or match.

When analyzing a set, Pollard [58] assumed that players are of equal strength.

His model is generalized in this chapter to include situations when players may

be of unequal strength.

Morris [50] states that if a player increases their effort on the important points

and decreases their effort on the unimportant points in a game, then they signif-

icantly increase their probability of winning a game. It is shown in this chapter

that this increase in the probability of winning the game is due to both the

89



90

variability about the mean effort and the importance of points.

The analysis begins with the example of a best-of-3 set tiebreaker match,

where optimal strategies for applying a finite number of increases in effort for

a set are determined by direct calculation. As a second example, a theorem on

weighted-importance from Chapter 4 is used to determine strategies on when

to apply an increase in effort for points in a game. This approach is shown to

be more effective when compared to direct calculation, and so it is used in the

remaining examples. The third example, is about determining strategies on when

to increase effort for games in a set, and the fourth example is about determining

strategies on when to increase effort for games in a match.

5.2 Probabilities of winning a match

A best-of-3 set tiebreaker match is a contest where the first player to win 2 sets

wins the match. Analyzing this system is non-trivial despite its relatively simple

structure. This is because it is not certain that all three sets will be played.

The scoreboard represents the number of points, games and sets that have been

played. At zero sets played, the set score is at (0, 0). One set played occurs with

the set score at either (1, 0) or (0, 1). Two sets played occurs with the set score

at (2, 0), (1, 1) or (0, 2). A third set is played only if the set score reaches (1, 1).

An explicit formula for the probability of player A winning a best-of-3 set

tiebreaker match based on ps
T can be calculated directly and represented as:

(ps
T )2(3− 2ps

T ).

Now suppose player A increases his effort for one set at a set score (e, f),

so as to change his probability of winning this set from ps
T to ps

T + ε, where

ps
T + ε < 1. This is equivalent to player B decreasing his effort at a set score
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(e, f) so as to change his probability of winning this set from 1−ps
T to 1−ps

T −ε,

since an increase of the probability of winning to one player is a decrease to the

other player. If the increase in effort is applied at (0, 0), the probability for

player A to win the match becomes: (ps
T + ε)ps

T + (ps
T + ε)(1− ps

T )ps
T + (1−

ps
T − ε)(ps

T )2 = (ps
T )2(3− 2ps

T ) + ε2ps
T (1 − ps

T ). The same result is obtained

if an increase in effort is applied at (1, 1). Similarly the probability of player

A to win the match when an increase in effort is applied at one of (1, 0) or

(0, 1) is (ps
T )2(3 − 2ps

T ) + εps
T (1 − ps

T ). These results agree with Brimberg et

al. [5]. Conditional on the set score reaching (1, 0), the probability for player

A to win the match when an increase in effort is applied at (1, 0) or (1, 1) is

ps
T (2 − ps

T ) + ε(1 − ps
T ); and conditional on the set score reaching (0, 1), the

probability for player A to win the match when an increase in effort is applied at

(0, 1) or (1, 1) is (ps
T )2 + εps

T . The results are collected in Table 5.1.

Current set score Set score at which Increase in probability
an increase is applied of winning match

(0, 0) (0, 0) ε2ps
T (1− ps

T )
(1, 0) εps

T (1− ps
T )

(0, 1) εps
T (1− ps

T )
(1, 1) ε2ps

T (1− ps
T )

(1, 0) (1, 0) ε(1− ps
T )

(1, 1) ε(1− ps
T )

(0, 1) (0, 1) εps
T

(1, 1) εps
T

(1, 1) (1, 1) ε

Table 5.1: The increase in probability of winning when effort is applied through-
out the match

Notice from current set score (0, 0), the probability of player A winning the

match when one increase in effort is applied at zero, one, or two sets played is

equal to (ps
T )2(3 − 2ps

T ) + ε2ps
T (1 − ps

T ). It is worth noting that applying an
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increase in effort at two sets played from current set score (0, 0), has the same

increase in probability of winning the match, as applying an increase in effort

at zero and one set played, even though it is not certain that three sets will be

played in the match.

Now suppose player A adopts a strategy of increasing his effort on zero, one or

two sets played by ε, and decreases his effort on zero, one or two sets played (but

at a different set played from that of the increase) by ε, where 0 < ps
T + ε < 1.

Calculations show that the probability of player A winning the match for this

situation is equal to (ps
T )2(3− 2ps

T ) + ε2(2ps
T − 1).

5.3 Optimizing a best-of-3 set match in sets

To be consistent with the notation used throughout this thesis, player A is repre-

sented as the decision-maker for increasing (decreasing) effort. Like results would

also apply, if player B was represented as the decision-maker.

Suppose player A can apply an increased effort in a best-of-3 set tiebreaker

match at any set played (e, f) so as to increase ps
T to ps

T + ε, ps
T + ε < 1.

On which set, should player A apply the increase to optimize the usage of their

available increase?

If player A decided to increase their effort at (e, f) from (k, l) and the set

score progressed to a state where the same (e, f) could not be reached, then to

make use of this increase in effort, an increase could be applied at the current

set score or at a later set score. For example if player A decided to increase their

effort at (1, 0), and the set score progressed to (0, 1), then an increase in effort

could be applied at (0, 1), or at (1, 1) (if the set score actually reached (1, 1)).

From Table 5.1, applying an increased effort at (0, 0) or (1, 1) results in an
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increased probability of ε2ps
T (1− ps

T ). Applying an increase in effort at (1, 0) or

(0, 1) results in an increased probability of only εps
T (1− ps

T ). However, if player

A decided to increase their effort at (1, 0) and the score progressed to (0, 1), then

they should increase their effort at (1, 1) or (0, 1), to optimize the usage of their

available increase. This gives an increased probability of ε2ps
T (1 − ps

T ). The

same increase is obtained if player A decided to increase their effort at (0, 1) and

the score progressed (1, 0), and therefore applying an increased effort at (1, 0)

or (1, 1). Also conditional on the set score reaching (1, 0), increasing effort at

(1, 0) or (1, 1) results in an increase of ε(1− ps
T ) and conditional on the set score

reaching (0, 1), increasing effort at (0, 1) or (1, 1) results in an increase of εps
T .

Therefore an increase in effort could be applied at either (0, 0), (1, 0), (0, 1)

or (1, 1) to optimize the usage of the available increase for player A, but if an

increase in effort was going to be applied at (1, 0) or (0, 1) and the match never

reached these scores, then an increase should be applied at (0, 1) or (1, 1) (if the

set score reached (1, 0)), or (1, 0) or (1, 1) (if the set score reached (0, 1)).

A tennis match can be represented graphically as a path where the nodes

represent the states of the match and the arcs represent the probabilities. The

initial node (I) is (0, 0) and the terminal node is (T ), the end of the match. For

a best-of-3 set match there are 6 paths, as represented below:

(0, 0)− (1, 0)− (2, 0),

(0, 0)− (1, 0)− (1, 1)− (2, 1),

(0, 0)− (1, 0)− (1, 1)− (1, 2),

(0, 0)− (0, 1)− (1, 1)− (2, 1),

(0, 0)− (0, 1)− (1, 1)− (1, 2),

(0, 0)− (0, 1)− (0, 2).
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Each path consists of (0, 0), zero sets played; (1, 0) or (0, 1), one set played;

(2, 0), (1, 1) or (0, 2), two sets played; and if the match is still going at (1, 1);

(2, 1) or (1, 2), three sets played. Applying an increase in effort at zero, one, two

or three sets played, would give an optimal solution on when to increase effort

since each path in a match only consists of one state from zero, one and two sets

played, and one state from three sets played (if it exists). The same conclusion

can be obtained by looking at the weighted-importance of sets in a best-of-3 set

tiebreaker match as a result of Theorem 4.3.4.

Suppose player A can apply M increases of effort in a match, 0 < M ≤ 3, on

any set/s played by increasing ps
T to ps

T + ε, ps
T + ε < 1. On which set/s, should

player A apply increases to optimize the usage of the M available increases?

Since it is optimal to apply one increase in effort at zero, one or two sets

played from (0, 0), and optimal to apply one increase in effort at one or two sets

played from (1, 0) or (0, 1), an optimal strategy for player A is to apply the M

increases at every set played throughout the course of the match until there are

no increases remaining.

The probability of player A winning a match based on a constant probability

is given by (ps
T )2(3 − 2ps

T ). When an increase and a corresponding decrease

in effort are applied in any order at zero, one or two sets played, there is an

additional term in the probability of player A winning the match of ε2(2ps
T − 1).

When ps
T = 1

2
, 2ps

T −1 = 0, and there is no change in the probabilities for either

player to win the match. When ps
T > 1

2
, the probability for player A to win the

match increases by ε2(2ps
T − 1) and therefore player B’s probability to win the

match decrease by ε2(2ps
T −1). This implies that it is an advantage for the better

player to vary his effort whilst maintaining his mean probability of winning a set.

It follows by symmetry that the weaker player is disadvantaged by varying his
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effort.

The weighted-importance at zero sets played is 2ps
T (1 − ps

T ), which is the

same as the weighted-importance at one set played. Since these sets are always

played in a best-of-3 set tiebreaker match, the probability of a player winning

the match when an increased effort is applied at zero sets and a corresponding

decreased effort at one set, is the same as when a decrease in effort is applied

at zero sets and an increase in effort at one set. In this situation, the increase

or decrease in probability of winning the match for a player is caused by the

variation about the mean probability of winning a set. However this is not the

case at two sets played, (1, 1), which has the highest importance in the match.

This set is only played a proportion of the time, and the better player could

further increase his probability of winning the match by increasing their effort at

(1, 1) and a proportion of the time at one set played.

For example, if player A has a probability of winning a tiebreaker set given

by ps
T = 0.6, then the probability of player A winning a best-of-3 set tiebreaker

match is 0.648. If a decrease in probability by ε = 0.1 occurs at zero sets played

and an increase in probability by ε = 0.1 occurs at (1, 1), then the probability

of player A winning the match becomes 0.650. However, since (1, 1) is only

played a proportion of the time, additional increase in effort can also be applied

at one set played with probability z, where z is found by solving the equation:

0.5[0.7z + 0.6(1− z)] + 0.5[0.3z + 0.4(1− z)] + z = 1, i.e. z = 0.5, in which case

the probability of player A winning the match now becomes 0.675. Out of the

0.675-0.648 = 0.027 increase in probability of winning the match for player A,

0.675−0.650
0.027

= 92.59% is contributed by (1, 1) being more important than the other

sets. Similar calculations show that player B with a probability of 0.4 of winning

a set also gains an advantage by decreasing effort at (0, 0) sets and increasing
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effort at (1, 1) and a proportion of the time at one set played. But since their

probability of winning a set < 1
2
, the increase gained of 0.025 for the weaker

player is less than what the stronger player achieves.

5.4 Optimizing a game in points

Suppose player A can apply an increased effort in a game on any one point played

by increasing p to p + ε, p + ε < 1. On which point, should player A apply the

increase to optimize the usage of their available increase?

It was shown that for increasing effort in a best-of-3 set tiebreaker match in

sets, an optimal solution could be obtained by looking at zero, one, two or three

sets played. A similar method can be applied to a game, where now zero, one,

two etc. points played can determine an optimal solution. Theorem 4.3.4 about

weighted-importance of points in a game is used to solve this problem. Table 5.2

represents the weighted-importance of points in a game for p = 0.61 (average

probability of points won on serve for men). The sum of the group of points at

n points played (represented by the diagonals) are equal to 0.257 for n ≤ 5 and

0.122 for n = 6, 7. It can be verified that W pg(a, b|g, h) for all g, h give similar

results. Therefore player A can increase his effort on any point in the game,

providing this increase is applied before deuce is reached, and then they will have

optimized the usage of their one available increase.

More formally:

Let W pg
n (g, h) represent the weighted-importance at n points played in a game

from point score (g, h). Algebraically this can be represented by:
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W pg
n (g, h) =

∑

a+b=n

W pg(a, b|g, h) (5.4.1)

Suppose the point score in a game is (g, h), and there is one increase in effort

available in the game. Optimizing the usage of this one available increase can be

assured by applying an increase in effort at (g, h) if for all n > (g + h),

Ipg(g, h) ≥ W pg
n (g, h).

B score
0 15 30 40 Ad

0 0.257 0.134 0.057 0.016
15 0.123 0.154 0.124 0.063

A score 30 0.046 0.107 0.154 0.157
40 0.010 0.040 0.100 0.122 0.075
Ad 0.048

Table 5.2: The weighted-importance of points in a game from (0,0) with p=0.61

Suppose player A can apply M increases in a game, on any point/s played

by increasing p to p + ε, p + ε < 1. On which point/s, should player A apply an

increase in effort to optimize the usage of the M available increases?

Let M(g,h) represent the number of increases remaining in the game at point

score (g, h). Let δn represent the count of n for n > (g + h). Optimizing the

usage of the M(g,h) available increases can be assured by applying an increase in

effort at (g, h), if for all n > (g + h),

Ipg(g, h) ≥ W pg
n (g, h), for at least M(g,h) of δn.
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For a game, it can be shown for all p that an increase in effort is to be applied

on every point of the game until either the game is finished or there are no

increases remaining.

Since W pg
n (0, 0) for n ≤ 5 are all equal, then the probability of a player

winning the game are the same irrespective of which points played an increase

and decrease in effort is applied, providing n ≤ 5. However, similar to sets in

a match, a player can gain a significant advantage by increasing effort at n = 4

or 5 due to the fact that the point scores (3, 1), (2, 2), (1, 3) or (3, 2), (2, 3) only

occur a proportion of the time. It has been shown that for a player on serve with

p = 0.61, 30-40 is the most important point in a game, followed by 30-30 and

deuce. The least important point is 40-0. Therefore a player can gain a significant

advantage by increasing effort on the important points in a game and decreasing

effort on the unimportant points. This result was established by Morris [50].

However, for the better player for the current game, this is a result of both the

variability about the mean effort and also the importance of points. This result

was also established for sets in a match.

5.5 Optimizing a set in games

Suppose player A can apply M increases in effort in an advantage set on any

game/s played by increasing pg
A to pg

A + ε, pg
A + ε < 1, and 1− pg

B to 1− pg
B + ε,

1− pg
B + ε < 1. On which game/s should player A apply an increase to optimize

the usage of the M available increases?

Let W gs
An

(i, j) and W gs
Bn

(i, j) represent the weighted-importance at n games

played in an advantage set for players A and B serving at (i, j) in the set respec-

tively. Algebraically these can be represented by:
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W gs
An

(i, j) =
∑

c+d=n

W gs
A (c, d|i, j) +

∑

c+d=n

W gs
B (c, d|i, j) (5.5.1)

W gs
Bn

(i, j) =
∑

c+d=n

W gs
B (c, d|i, j) +

∑

c+d=n

W gs
A (c, d|i, j) (5.5.2)

Let M(i,j) represent the number of increases remaining at game score (i, j).

Let δn represent the count of n for n > (i+ j). Optimizing the usage of the M(i,j)

available increases can be assured by applying an increase in effort at (i, j), if for

n > (i + j),

Igs
A (i, j) ≥ W gs

An
(i, j) (if player A is serving at (i, j)), for at least M(i,j) of δn.

Igs
B (i, j) ≥ W gs

Bn
(i, j) (if player B is serving at (i, j)), for at least M(i,j) of δn.

The situation is analyzed using values of pA = 0.62 and pB = 0.60 to represent

a 0.01 difference either side of the men’s average probability of points won on

serve. Suppose we are at the start of a set. Table 5.3 represents W gs
An

(0, 0) and

W gs
Bn

(0, 0) for values of pA = 0.62 and pB = 0.60. It can be observed that the

inequality W gs
A0

(0, 0) = Igs
A (0, 0) ≥ W gs

An
(0, 0) for all n > 0 is true. Therefore, an

increase in effort should be applied at (0, 0) if player A is currently serving. It

can be observed that the inequality W gs
B0

(0, 0) = Igs
B (0, 0) ≥ W gs

Bn
(0, 0) for n > 0

is true, only if M(i,j) ≥ 6. Therefore, an increase in effort should only be applied

at (0, 0) if M(i,j) ≥ 6, for player B currently serving.

Based on the above analysis, Tables 5.4 and 5.5 give decisions on when to

apply an increase in effort on the current game throughout the set. The tables

can be interpreted as follows: If the number of increases in effort remaining is

greater than or equal to the number represented in the tables for the current score,

apply an increase in effort for that game, otherwise don’t apply an increase.
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n W gs
An

(0, 0) W gs
Bn

(0, 0)

0 0.29 0.27
1 0.27 0.29
2 0.29 0.27
3 0.27 0.29
4 0.29 0.27
5 0.27 0.29
6 0.29 0.27
7 0.27 0.29
8 0.29 0.27
9 0.27 0.29
10 0.15 0.14
11 0.14 0.15
12 0.10 0.09

Table 5.3: Values of W gs
An

(0, 0) and W gs
Bn

(0, 0) given pA = 0.62 and pB = 0.60

For example: Suppose the score is (0, 0), player B serving. Then an increase

in effort would only be applied if the number of increases remaining is greater

than or equal to 6. Suppose the score is (3, 4), player A serving. Then an increase

in effort would only be applied if the number of increases remaining are greater

than or equal to 2.

Suppose player A had only 1 increase in effort to apply throughout the set.

As a result of Tables 5.4 and 5.5, at the start of the match it would be correct

for player A to apply this increase in effort if player A is serving, but incorrect

to apply this increase in effort if player B is serving. This is because player A

is given a higher probability of winning a point on serve compared to player B.

Now suppose player B starts serving and the set score progresses (with player

A score represented first): (0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4),

(4, 4), (4, 5), (4, 6), then this increase in effort would not be applied by player A

until (4, 5).

Suppose player A has one increase in effort available in a set, when the set
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B score
0 1 2 3 4 5 6

0 1 5 5 4 4 3
A score 1 1 1 4 4 3 3

2 1 1 1 3 3 2
3 1 1 1 1 2 2
4 1 1 1 1 1 1
5 1 1 1 1 1 1 1
6 1 1

Table 5.4: Minimum number of increases in effort available for increase to be
optimal when player A is serving given pA = 0.62 and pB = 0.60

B score
0 1 2 3 4 5 6

0 6 1 1 1 1 1
A score 1 5 5 1 1 1 1

2 5 4 4 1 1 1
3 4 4 3 3 1 1
4 4 3 3 2 2 1
5 3 3 2 2 1 2 1
6 1 2

Table 5.5: Minimum number of increases in effort available for increase to be
optimal when player B is serving given pA = 0.62 and pB = 0.60

score reaches (5, 3), player B serving. It can be shown that player A should aim

to win with a score (6, 4) by conserving energy while player B is serving. If it

happens that the score reaches (5, 4) player A should increase his effort to win

his own serve and the set. This strategy dominates the alternative of expending

the energy to break player B’s serve and trying to win the set with a score (6, 3).
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5.6 Optimizing a match in games

Suppose player A can apply M increases in effort in an advantage match on any

game/s played by increasing pg
A to pg

A + ε, pg
A + ε < 1, and 1− pg

B to 1− pg
B + ε,

1− pg
B + ε < 1. On which game/s should player A apply an increase to optimize

the usage of the M available increases?

Let W gm
Ars

(i, j : k, l) and W gm
Brs

(i, j : k, l) represent the weighted-importance at

r games played in a set and s sets played in an advantage match for players A

and B serving at (i, j : k, l) respectively. Algebraically these can be represented

by:

W gm
Ars

(i, j : k, l) =
∑

c + d = r

e + f = s

W gm
A,A(c, d : e, f |i, j : k, l)+

∑

c + d = r

e + f = s

W gm
B,A(c, d : e, f |i, j : k, l)

W gm
Brs

(i, j : k, l) =
∑

c + d = r

e + f = s

W gm
A,B(c, d : e, f |i, j : k, l)+

∑

c + d = r

e + f = s

W gm
B,B(c, d : e, f |i, j : k, l)

Let M(i,j:k,l) represent the number of increases remaining at game and set score

(i, j : k, l). Let δrs represent the count of rs for r > (i + j), if (e + f) = (k + l),

and s > (k + l), when (e + f) > (k + l). Optimizing the usage of the M(i,j:k,l)

available increases can be assured by applying an increase in effort at (i, j : k, l),

if for r > (i + j), if (e + f) = (k + l), and s > (k + l), when (e + f) > (k + l),

Igm
A (i, j : k, l) ≥ W gm

Ars
(i, j : k, l) (if player A is serving at (i, j : k, l)), for at least

M(i,j:k,l) of δrs.

Igm
B (i, j : k, l) ≥ W gm

Brs
(i, j : k, l) (if player B is serving at (i, j : k, l)), for at least

M(i,j:k,l) of δrs.
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Example: Although it might be correct for player A to increase their effort

on a particular game within a set, it might be incorrect to increase their effort on

the same game within a match as a result of the extra level of hierarchy. Suppose

player A has one increase in effort available in an advantage match, when the

game score and set score reaches (0, 3 : 1, 0), with player B serving. i.e player A

is one set up but down two breaks of serve in the second set. Let pA = 0.62 and

pB = 0.60.

W gm
B02

(0, 3 : 1, 0) = W gm
A,B(0, 0 : 1, 1|0, 3 : 1, 0) + W gm

A,B(0, 0 : 2, 0|0, 3 : 1, 0)

+W gm
B,B(0, 0 : 1, 1|0, 3 : 1, 0) + W gm

B,B(0, 0 : 2, 0|0, 3 : 1, 0)

W gm
A,B(0, 0 : 1, 1|0, 3 : 1, 0) = Igm

A (0, 0 : 1, 1)N gm
A,B(0, 0 : 1, 1|0, 3 : 1, 0)

W gm
A,B(0, 0 : 2, 0|0, 3 : 1, 0) = Igm

A (0, 0 : 2, 0)N gm
A,B(0, 0 : 2, 0|0, 3 : 1, 0)

W gm
B,B(0, 0 : 1, 1|0, 3 : 1, 0) = Igm

B (0, 0 : 1, 1)N gm
B,B(0, 0 : 1, 1|0, 3 : 1, 0)

W gm
B,B(0, 0 : 2, 0|0, 3 : 1, 0) = Igm

B (0, 0 : 2, 0)N gm
B,B(0, 0 : 2, 0|0, 3 : 1, 0)

N gm
A,B(0, 0 : 1, 1|0, 3 : 1, 0) = N

gs
T

A (0, 6|0, 3) + N
gs

T
A (2, 6|0, 3) + N

gs
T

A (4, 6|0, 3) +

N
gs

T
A (5, 7|0, 3)

= 0.121 + 0.342 + 0.195 + 0.021 = 0.679

N gm
A,B(0, 0 : 2, 0|0, 3 : 1, 0) = N

gs
T

A (6, 4|0, 3) + N
gs

T
A (7, 5|0, 3) = 0.021 + 0.026 =

0.047

N gm
B,B(0, 0 : 1, 1|0, 3 : 1, 0) = N

gs
T

B (1, 6|0, 3) + N
gs

T
B (3, 6|0, 3) + N

gs
T

B (6, 7|0, 3)

= 0.114 + 0.070 + 0.038 = 0.222

N gm
B,B(0, 0 : 2, 0|0, 3 : 1, 0) = N

gs
T

B (6, 3|0, 3) + N
gs

T
B (7, 6|0, 3) = 0.009 + 0.043 =

0.052

Igm
A (0, 0 : 1, 1) = I

gs
T

A (0, 0)Ism(1, 1) = 0.286× 0.490 = 0.140

Igm
A (0, 0 : 2, 0) = I

gs
T

A (0, 0)Ism(2, 0) = 0.286× 0.185 = 0.053
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Igm
B (0, 0 : 1, 1) = I

gs
T

B (0, 0)Ism(1, 1) = 0.269× 0.490 = 0.132

Igm
B (0, 0 : 2, 0) = I

gs
T

B (0, 0)Ism(2, 0) = 0.269× 0.185 = 0.050

Therefore:

W gm
B02

(0, 3 : 1, 0) = 0.140× 0.679+0.053× 0.047+0.132× 0.222+0.050× 0.052 =

0.129

Also Igm
B (0, 3 : 1, 0) = I

gs
T

B (0, 3)Ism(1, 0) = 0.180× 0.317 = 0.057

Since W gm
B02

(0, 3 : 1, 0) > Igm
B (0, 3 : 1, 0), it would be incorrect to apply an

increase at this state of the match, but it would have been correct if it had

been in the final set since player B is serving and player A is behind in the set.

This indicates that a player ahead on sets, but behind in the current set, may

be better off to save energy to try and win the next set, rather than expend

additional energy in the current set.

5.7 Summary

It has been shown that a player can increase their effort on any point in a game

before deuce, and they have optimized the usage of this one available increase.

It has also been shown that an increased probability of a player winning a game

by varying effort at zero, one, two or three points played, for p > 1
2
, is due to

the variation about the mean p. However, since the states (3, 1), (2, 2), (1, 3) or

(3, 2), (2, 3) only occur a proportion of the time, the better player can obtain

an even greater advantage by increasing effort on the most important points and

decreasing effort on the least important points in a game. By considering a tennis

match comprised of different levels of hierarchies, it has been demonstrated how

a player can determine whether to apply an increase in effort at a particular game
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in the match.



Chapter 6

FORECASTING PRIOR TO

THE START OF A MATCH

6.1 Introduction

Clarke and Dyte [13] use the official ATP rankings to estimate head-to-head

probabilities of winning a set and simulate tournament predictions. Bedford and

Clarke [4] predict probabilities of winning tennis matches using an exponential

smoothing method based on the number of games and sets players have reached

in the past at the end of completed matches. Here we use estimated probabilities

of winning service points as inputs to our Markov chain model to predict a range

of outcomes of tennis matches played at the 2003 Australian Open. This model

has advantages over [4] and [13], in that it allows more flexibility to calculate a

range of predicted outcomes, and not just head-to-head predictions. Predicting

the number of games played in a match, which has applications to index betting,

highlights this flexibility.

The effect of the court surface on a player’s performance is also analyzed in

106
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this chapter. The results explain why Australian tennis players in recent years

have performed better at the hard courts of the US Open compared to the hard

courts of the Australian Open. The results also show why Andre Agassi had a

better chance of winning all four grand slams compared to Pete Sampras, even

though Sampras was expected to win more grand slams overall.

As an example, a very long match between El Aynaoui and Roddick played

at the 2003 Australian Open is analyzed, to see whether the long fifth advantage

set in that match could have been predicted prior to the start.

6.2 Court Surface

The ITF tennis website www2.itftennis.com/PD/select.htm, kept a database of

the percentages of matches won for each player on all surfaces, categorized by

hard court, clay, grass and carpet. Wimbledon is played on grass, the French

Open on clay, and the US and Australian Open on hard court. The latter two

tournaments today are played on different types of hard courts; the US Open is

played on DecoTurf and the Australian Open on Rebound Ace. Since carpet is

not used in grand slam tennis, this surface will not be considered for the analysis

to follow.

A player’s optimal surface is defined as the surface from s ∈ {g = grass, h =

hard court, c = clay} on which they win their highest percentage of matches. The

optimal surface for men for a sample of the top 200 players in the ATP Champions

Race, were taken as of 18/11/02, and for the women, a sample were taken from

the top 200 in the WTA tour as of 25/08/03. These overall percentages for

optimal surface are represented in Table 6.1.

A player’s next best surface is defined as the surface on which they win their
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Optimal Surface Men Women
Grass 33.5% 27.5%

Hard court 24.6% 26.0%
Clay 41.9% 46.5%

100.0% 100.0%

Table 6.1: Player’s optimal surface categorized by gender

second highest percentage of matches. The same sample of players used in Ta-

ble 6.1, are used to find the player’s next best surface in Table 6.2.

Optimal Surface Next best surface Men Women
Grass Hard court 76.8% 71.2%

Clay 23.2% 28.8%
Hard court Clay 50.0% 53.8%

Grass 50.0% 46.2%
Clay Hard court 92.9% 76.3%

Grass 7.1% 23.7%

Table 6.2: Player’s next best surface categorized by optimal surface and gender

If a player’s optimal surface is grass, is their next best surface hard court or

clay, or does it make no difference? If p represents the true proportion that a

player’s next best surface is hard court given their optimal surface is grass, then

the hypothesis test becomes:

Ho : p = 0.5

Ha : p 6= 0.5

The test statistic is:

z = p̂−poq
po (1−po )

n

= 0.768−0.5q
0.5(1−0.5)

200

= 7.58, for men



109

= 0.712−0.5q
0.5(1−0.5)

200

= 6.00, for women

We reject Ho: p-value < 0.01 for both genders. Similar tests can be carried

out when player’s optimal surface is clay and hard court. Ho is rejected for both

genders for clay and not rejected for either gender for hard court. This results in

the following assumption (Assumption 6.2.1): There is a fundamental ordering of

courts - grass, hard court, clay. A player’s next best surface is adjacent to their

optimal surface.

For example, if a player’s optimal surface is grass or clay, their next best

surface is hard court. If a player’s optimal surface is hard court, their next best

surface could be either grass or clay.

The main factor that distinguishes between different grand slams is the court

surface. It may be that the speed of the court has an influence on various match

statistics. Tables 6.3 and 6.4 represent the match statistics for men and women

from the 2004 French Open, 2005 Australian Open, 2004 US Open and 2004

Wimbledon, where ∗ stands for: as a proportion of total points played. Progress-

ing from left to right for both men and women, shows an increase in the winning

percentage on first serve, increase in the serving points won, increase in aces∗ and

an increase in net approaches∗. It is documented in Furlong [26] that Wimbledon

on grass is a fast surface and the French Open on clay is a slow surface. Therefore

it can be concluded that the Australian Open and the US Open are between the

French Open and Wimbledon in terms of court speed, and it appears that the

US Open in 2004 was a faster court surface than the Australian Open in 2005.

Observing the match statistics from year to year at the Australian and US Open,

can give some indication of the court speed for that year. Table 6.5 represents

the percentage of points won on serve for the four grand slams from 2000-2005,
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along with the averages for each grand slam. There is some indication that the

speed of the surface at the Australian Open was faster in the year 2000 compared

to the following years. Overall there is some indication that on average the US

Open is faster than the Australian Open.

The following assumption is made (Assumption 6.2.2): There is a fundamental

ordering of courts - grass, DecoTurf, Rebound Ace, clay. A player’s next best

surface is adjacent to their optimal surface.

For example, if a player’s optimal surface is grass i.e. Wimbledon, their next

best grand slam performances are expected to occur on DecoTurf i.e. US Open.

If a player’s optimal surface is DecoTurf, their next best grand slam performances

could occur on grass i.e. Wimbledon or on Rebound Ace i.e. Australian Open.

Let gk, hk, ck, dk, rk represent the number of matches won on grass, hard court,

clay, DecoTurf and Rebound Ace for player k respectively. Let g∗k, h
∗
k, c

∗
k, d

∗
k, r

∗
k

represent the number of matches played on grass, hard court, clay, DecoTurf

and Rebound Ace for player k respectively. The following assumption (Assump-

tion 6.2.3) is made: hk

h∗k
= dk+rk

d∗k+r∗k

Theorem 6.2.1. If player k is winning a higher percentage of matches on grass

than on hard court, then they are expected to win a higher percentage of matches

on DecoTurf, than on the Rebound Ace.

Proof. Suppose dk

d∗k
< hk

h∗k
. Then according to Assumption 6.2.2, gk

g∗k
< dk

d∗k
. Given

gk

g∗k
> hk

h∗k
, this implies hk

h∗k
< gk

g∗k
< dk

d∗k
. Therefore hk

h∗k
< dk

d∗k
. Contradiction! Therefore

dk

d∗k
> hk

h∗k
= dk+rk

d∗k+r∗k
. Therefore dk

d∗k
> rk

r∗k
.

Theorem 6.2.2. If player k is winning a higher percentage of matches on clay

than on hard court, then they are expected to win a higher percentage of matches

on Rebound Ace than on the DecoTurf.
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French2004 Aust2005 US2004 Wim2004
1st serve percentage (%) 59.7 59.7 57.6 63.2
Winning percentage on 1st serve (%) 67.0 70.2 71.6 73.3
Winning percentage on 2nd serve (%) 48.0 50.5 48.5 51.1
Serving points won (%) 59.2 62.2 62.1 65.2
Receiving points won (%) 40.8 37.8 37.9 34.8
Aces∗ (%) 4.7 7.2 8.5 8.8
Double faults∗ (%) 4.3 3.9 4.8 4.2
Unforced errors∗ (%) 33.7 33.2 24.2 21.4
Break point conversions (%) 44.5 41.0 41.5 36.4
Winners (including service)∗ (%) 35.1 32.4 35.1 36.0
Net approaches∗ (%) 26.4 28.3 30.4 33.4
Net approaches won (%) 62.8 64.6 65.9 62.9
Average 1st serve speed (km/h) 169.3 181.2 181.8 186.4
Average 2nd serve speed (km/h) 137.7 148.3 147.7 159.0

Table 6.3: Grand slam match statistics for men 2004-2005

French2004 Aust2005 US2004 Wim2004
1st serve percentage (%) 59.8 60.1 60.4 63.2
Winning percentage on 1st serve (%) 59.2 61.7 63.3 65.5
Winning percentage on 2nd serve (%) 40.9 44.1 45.6 45.2
Serving points won (%) 52.5 54.8 56.2 57.9
Receiving points won (%) 47.5 45.2 43.8 42.1
Aces∗ (%) 3.0 3.9 3.8 4.6
Double faults∗ (%) 6.9 6.0 6.0 5.3
Unforced errors∗ (%) 39.8 43.1 26.1 29.8
Break point conversions (%) 51.0 48.7 48.3 44.3
Winners (including service)∗ (%) 29.9 28.9 28.4 31.5
Net approaches∗ (%) 17.6 18.1 21.4 21.9
Net approaches won (%) 57.7 66.0 65.1 64.3
Average 1st serve speed (km/h) 146.5 156.1 157.8 159.4
Average 2nd serve speed (km/h) 124.7 133.1 138.7 138.0

Table 6.4: Grand slam match statistics for women 2004-2005
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Tournament Year Men (%) Women (%)
French Open 2001 60.1 54.1

2002 60.4
2003 60.1 53.4
2004 59.4 53.0

Average 60.0 53.5
Australian Open 2000 63.8 57.0

2001 61.9 54.9
2002 61.7 54.4
2003 61.7 54.9
2004 63.0 55.3
2005 62.2 54.8

Average 62.4 55.2
US Open 2002 62.6 55.9

2003 63.6 56.1
2004 62.1 56.2

Average 62.8 56.1
Wimbledon 2001 64.5 57.1

2002 63.8 57.0
2003 64.4 58.0
2004 65.6 57.2

Average 64.6 57.3

Table 6.5: Percentage of points won on serve for grand slams from 2000-2005

Proof. The proof to Theorem 6.2.2 is obtained similarly to the proof for Theo-

rem 6.2.1.

Theorem 6.2.3. If player k is winning a higher percentage of matches on grass

than on hard court, then their optimal surface is either grass or DecoTurf.

Proof. Given gk

g∗k
> hk

h∗k
, then gk

g∗k
> ck

c∗k
(Assumption 6.2.1). Then the optimal

surface for player k cannot be clay. From Assumption 6.2.2, dk

d∗k
> rk

r∗k
. Then the

optimal surface for player k cannot be Rebound Ace. Suppose gk

g∗k
= 8

10
, dk

d∗k
= 2

5
and

rk

r∗k
= 1

5
(Remembering that hk

h∗k
= dk+rk

d∗k+r∗k
from Assumption 6.2.3). Then the optimal

surface for player k can be grass, since 8
10

> 2
5
. Suppose gk

g∗k
= 7

10
, dk

d∗k
= 4

5
and

rk

r∗k
= 1

5
. Then the optimal surface for player k can be DecoTurf, since 4

5
> 7

10
.
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Theorem 6.2.4. If player k is winning a higher percentage of matches on clay

than on hard court, then their optimal surface is either clay or Rebound Ace.

Theorem 6.2.5. If player k is winning a higher percentage of matches on hard

court than on grass or clay, then their optimal surface is either DecoTurf or

Rebound Ace.

Proof. The proofs to Theorems 6.2.4 and 6.2.5 are obtained similarly to the proof

for Theorem 6.2.3.

Since 1988, when the Australian Open moved to the Rebound Ace at Flinders

Park, no male Australian has won the Australian Open. There have been four

Australian grand slam winners, with three of the four coming from the US Open

and one at Wimbledon. The best performances have come from Wimbledon and

the US Open.

Table 6.6 represents the proportion of matches won on different surfaces and

the number of each grand slam won for particular elite players, where W rep-

resents Wimbledon, U represents US Open, A represents Australian Open and

F represents French Open. Notice that the Australian players of Hewitt, Rafter

and Philippoussis all have their optimal surface as grass or DecoTurf, meaning

they are likely to perform better at Wimbledon and the US Open, than at the

Australian Open. The fact that the elite Australian players since 1988 have been

suited to the faster surfaces may help to explain why there has not been in this

time an Australian champion at the Australian Open.

Some interesting findings arise when comparing Sampras and Agassi. From

Table 6.6, both players are about equal strength, with Sampras winning 77.8% of

matches and Agassi 78.1% of matches. Sampras has won 14 grand slams overall,

the most won by any male tennis player, but has never won the French Open.
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Grass(%) Hard(%) Clay(%) Total(%) W U A F
Hewitt 82.3% 76.4% 69.0% 76.0% 1 1 0 0
Rafter 74.7% 67.2% 51.4% 66.5% 0 2 0 0
Philippoussis 69.4% 64.8% 57.1% 63.8% 0 0 0 0
Sampras 83.5% 80.6% 62.5% 77.8% 7 5 2 0
Agassi 76.2% 79.6% 74.1% 78.1% 1 2 4 1

Table 6.6: Proportion of matches won on different surfaces and the number of
each grand slam won for particular players

Agassi has won only 8 grand slams, but has won all four on different surfaces.

Agassi is the only male player to win all four grand slams on different surfaces,

since the Australian Open moved to Flinders Park in 1988.

We can use the data in Table 6.6 to build a simple model. Suppose the

proportion of matches won on grass and clay for both players represents their

proportion of matches won at Wimbledon and the French Open respectively.

Suppose the proportion of matches won on hard court for both players represents

their proportion of matches won at the US and Australian Open. If a player is

winning a proportion of matches at grand slam i, given by xi, then the probability

they will win the tournament is approximately x7
i and the probability they will

win at least one particular grand slam over n years is given by 1 − (1 − x7
i )

n.

Therefore the approximate probability of a player winning at least one of every

grand slam over n years is given by:

∏
i

[1− (1− x7
i )

n] (6.2.1)

The expected number of grand slam i won by a player over n years is given

by nx7
i . Therefore the expected number of grand slams won by a player over n

years is given by:
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∑
i

nx7
i (6.2.2)

Sampras and Agassi were on the tour at the same time for 13 years. Applying

Equations 6.2.1 and 6.2.2 with n = 13 and using the data on the first half of

Table 6.6 to estimate xi for each player, gives Sampras and Agassi a 0.36 and

0.64 probability of winning all four grand slams respectively. Also Sampras and

Agassi are expected to win 9.9 and 8.8 grand slams respectively. Even though

Sampras is expected to win more grand slams overall, Agassi is almost twice as

likely to win all four grand slams. This is largely contributed to the fact that

Agassi has an optimal surface on hard court and can better handle the extremes

in pace from all surfaces, whereas Sampras being a serve-and-volleyer is most

likely to have an optimal surface on grass, and therefore tends to struggle on the

slower surface of clay.

In the above model, the same probability has been used for each player win-

ning a match at a particular grand slam. This assumption is questionable, and it

may be more reasonable to assume that the probability a player wins the match

decreases as the tournament progresses. Using this approach still gives Sampras

a higher expected number of grand slams whilst Agassi is more likely to win all

four grand slams. However the differences are closer together when compared to

the initial model.

Out of all the tournaments played in the ATP Champions Race, 31 are played

on hard court, 25 on clay, 6 on grass and 6 on carpet. Every player is best suited

to a particular court speed in the range of grass to clay. The lack of grass

tournaments is unhelpful to the players who are best suited to the faster courts.
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6.3 Match predictions

6.3.1 Collecting the data

Each week from the beginning of the year, the ATP tour website:

www.atptour.com/en/media/rankings/matchfacts.pdf provides data on the top

200 players in the ATP Champions Race. Of interest to us are the statistics on

winning percentages for players on both serving and receiving. Let:

ai = percentage of 1st serves in play for player i,

bi = percentage of points won on first serve for player i,

(given that first serve is in)

ci = percentage of points won on second serve for player i,

di = percentage of points won on return of first serve for player i,

ei = percentage of points won on return of second serve for player i.

Since we only require the percentage of points won on serve and return of

serve for each player, this requires some manipulation of the data.

Calculating the percentage of points won on serve for player i is quite straight

forward. A player wins a point on serve by getting his first serve in and winning

the point, or by missing his first serve and winning on his second serve. This

results in:

fi = aibi + (1− ai)ci (6.3.1)

where fi = percentage of points won on serve for player i.

The percentage of points won on return of serve is calculated in a similar

manner, except that the percentage of 1st serves in play is not taken from an

individual player’s statistics, but rather an average player. Thus we use the
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averages for the top 200 players for the chances that the player’s opponent gets

his first serve in to play. Unfortunately the ATP does not publish averages for

all players. However the top 200 is probably more suitable in this case as this is

more indicative of the standard of opponent likely in a grand slam and we get

the following result:

gi = aavdi + (1− aav)ei (6.3.2)

where gi = percentage of points won on return for player i. The subscript av

denotes the ATP tour averages, so aav = 1st serve percentage for ATP tour

average = 58.7%.

6.3.2 Estimating fi and gi before the start of a tournament

The ATP data based on the Champions Race is comprised of the four grand

slams, the nine tennis master series tournaments, the tennis Masters Cup and the

international series tournaments. The ATP data from the Champions Race does

not comprise of all professional men’s tennis matches. This means that in a grand

slam event there may be players, such as qualifiers and wild-card entrants, where

very few or no matches had been played to obtain reliable data. To overcome

this problem, each player’s serving and receiving statistics are initialized with

overall ATP tour averages based on the number of matches played in the prior

year. This gives the following exponential smoothing equations:

f I
i = fav + [1− (1− α)n][fp

i − fav]

gI
i = gav + [1− (1− α)n][gp

i − gav]
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where:

f I
i = initial percentage of points won on serve for player i

fav = percentage of points won on serve from the average ATP tour player

fp
i = percentage of points won on serve for player i at the end of the prior year

gI
i = initial percentage of points won on return of serve for player i

gav = percentage of points won on return of serve from the average ATP tour

player

gp
i = percentage of points won on return of serve for player i at the end of the

prior year

α = smoothing constant

n = number of matches played in the prior year

A player’s serving and receiving statistics are updated prior to the start of a

tournament by the following exponential smoothing equations:

fu
i = f I

i + [1− (1− α)m][f c
i − f I

i ]

gu
i = gI

i + [1− (1− α)m][gc
i − gI

i ]

where:

fu
i = updated percentage of points won on serve for player i

f c
i = percentage of points won on serve for player i in the current year

gu
i = updated percentage of points won on return of serve for player i

gc
i = percentage of points won on return of serve for player i in the current year

α = smoothing constant

m = number of matches played in the current year



119

Values in the range 0.05 ≤ α ≤ 0.15 have been used in the sports literature

such as Bedford and Clarke [4]. It is important not to overestimate α, since

there will be matches where players gain a large increase in serving and receiving

statistics for the next round, due to an injured opponent. On the other hand,

underestimating α will not reflect the recent form of some players. Values in the

range 0.05 ≤ α ≤ 0.15 were tested in earlier grand slam events, and α = 0.10

gives reasonable estimates and is chosen for this model.

Example: Suppose a player recorded the following match statistics. In 2002,

the number of matches played = 35, the percentage of points won on serve =

65% and the percentage of points won on return of serve = 38%. Just before the

start of Wimbledon in 2003, this player had played 6 matches in 2003, had won

68% of points on serve and won 39% of points on return of serve.

Prior match statistics reveal that fav = 61% and gav = 39%. Given fp
i =

65%, gp
i = 38% and n = 35; it follows that f I

i = 65% and gI
i = 38%. Given

f c
i = 68%, gc

i = 39%,m = 6; it follows that fu
i = 66% and gu

i = 38%.

6.3.3 Combining player statistics

While we expect a good server to win a higher proportion of serves than average,

this proportion would be reduced somewhat if his opponent is a good receiver.

This is a common problem in modelling sport. For example, in cricket, what is

the expected outcome when a bowler who gains a wicket every 20 runs bowls

against a batsman who loses his wicket every 50 runs? For application in a

cricket simulator, Dyte [22] used a multiplicative method that compared a player’s

average to the overall average for estimating dismissal rates when a particular

batsman faced a particular bowler. Here we have the added complication caused
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by the symmetry that one player’s serving statistics are the complement of his

opponent’s receiving statistics, so the two percentages must add to 100%. For

this reason an additive approach was desirable. We also have the complication

that we expect all players to win a higher percentage of serves on (say) grass

than other surfaces. For example at the 2002 Australian Open 61.7% of points

were won on service, whereas at the 2002 Wimbledon championships this rose to

63.8%. Such statistics are usually available on the official web site corresponding

to the grand slam tournament.

In simple terms, we take the percentage of points a player wins on serve as

the overall percentage of points won on serve for that tournament (this takes

account of court surface), plus the excess by which a player’s serving percentage

exceeds the average (this accounts for player’s serving ability), minus the excess

by which the opponent’s receiving percentage exceeds the average (this accounts

for opponent’s returning ability). A similar argument is used for percentage of

points won on return of serve.

More formally, letting the subscript t denote the particular tournament aver-

ages, fij = the combined percentage of points won on serve for player i against

player j, gji = the combined percentage of points won on return for player j

against player i :

fij = ft + (fi − fav)− (gj − gav) (6.3.3)

gji = gt + (gj − gav)− (fi − fav) (6.3.4)

Note that formulas 1 and 2, are symmetrical. Since ft+gt = 1 it is easily shown

that fij + gji= 1 for all i, j as required. It is also clear that averaging statistics

over all possible players and opponents produces the tournament average.
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Two parameters, fij and fji (or pA and pB according to the notation being

used in prior chapters) have now been obtained, which can be entered in the

Markov chain model to obtain predictions, such as probabilities of winning and

mean length of matches.

6.3.4 Exponential smoothing during a tournament

During a grand slam tournament, the percentage of points won on serve and

return of serve for each player can be updated based on the actual match statistics

using simple exponential smoothing. The equations are represented by:

N f
i = Of

i + α(Af
i − P f

i ) (6.3.5)

N g
i = Og

i + α(Ag
i − P g

i ) (6.3.6)

where:

N f
i represents the new percentage of points won on serve for player i.

N g
i represents the new percentage of points won on return of serve for player i.

Of
i represents the old percentage of points won on serve for player i

Og
i represents the old percentage of points won on return of serve for player i

Af
i represents the actual percentage of points won on serve for player i

Ag
i represents the actual percentage of points won on return of serve for player i

P f
i represents the predicted percentage of points won on serve for player i

P g
i represents the predicted percentage of points won on return of serve for player

i

α = smoothing constant = 0.1
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Example: Table 6.7 represents serving and receiving statistics for four players

(A, B, C and D) in rounds 1 and 2 in a tournament. The ATP tour averages are

61.6% and 38.4% for the percentage of points won on serve and return of serve

respectively and the tournament averages are 64.3% and 35.7% for the percentage

of points won on serve and return of serve respectively. For round 1, Of
i and Og

i

are obtained from the exponential smoothing techniques used before the start

of the tournament. P f
i and P g

i are obtained from Equations 6.3.3 and 6.3.4 for

combining individual player statistics. Af
i and Ag

i are the actual match statistics

obtained at the end of the match. N f
i and N g

i are the new player statistics to be

used for the next round calculated from Equations 6.3.5 and 6.3.6. For round 2,

Of
i and Og

i are equal to N f
i and N g

i from round 1 respectively. P f
i , P g

i , Af
i , Ag

i ,

N f
i and N g

i are obtained from the same methods used in round 1.

1st Round Of
i (%) Og

i (%) P f
i (%) P g

i (%) Af
i (%) Ag

i (%) N f
i (%) N g

i (%)
A 69.9 43.2 72.6 40.5 80.0 48.0 70.6 43.9
B 61.6 38.4 59.5 27.4 52.0 20.0 60.8 37.7
C 59.6 36.9 62.3 34.2 62.3 34.2 59.6 36.9
D 61.6 38.4 65.8 37.7 65.8 37.7 61.6 38.4

2nd Round
A 70.6 43.9 73.3 41.2 79.0 58.0 71.0 46.0
D 61.6 38.4 58.8 26.7 42.0 21.0 60.0 38.0

Table 6.7: Player statistics throughout a tournament

6.3.5 2003 Australian Open men’s predictions

Suppose two players, A and B, meet in a tournament. The player who has greater

than a 50% chance of winning was the predicted winner. Table 6.8 represents the

percentage of matches correctly predicted for each round and shows that overall

72.4% of the matches were correctly predicted. Based on the ATP tour rankings
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Round Percentage No. of
correct(%) matches

1 78.1 64
2 62.5 32
3 68.8 16
4 75.0 8
5 75.0 4
6 50.0 2
7 100.0 1

Total 72.4 127

Table 6.8: Percentage of matches correctly predicted at the 2003 Australian Open

only 68.0% were correctly predicted.

If pi represents the probability for the predicted player for the ith match, then

the proportion of matches (P ) correctly predicted and the variance (V ) of the

proportion can be calculated by:

P =

∑
i pi

n

V =

∑
i piqi

n2

where:

qi = 1− pi

n = total number of matches played in the tournament

Applying these equations gives values of P = 0.753 and V = 0.0013. The 95%

confidence interval is represented by: (0.753−1.96
√

0.0013, 0.753+1.96
√

0.0013)

= (0.682,0.824), which includes the value of 0.724.

Out of 127 scheduled matches for the 2003 Australian Open men’s singles,

only 118 were completed. For the other 9 matches, players had to withdraw
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Games played 3 sets 4 sets 5 sets
Prediction 4737.7 41.1 42.7 34.2

Actual 4250.0 50.0 42.0 26.0

Table 6.9: Predicted and actual number of games and sets played at the 2003
Australian Open men’s singles

prior to the match or retire injured during the match. Therefore, only the 118

completed matches were used for predicting the number of games and sets played.

Table 6.9 gives the results. Overall, there were 487.7 fewer games played than

predicted. This equates to 487.7
118

= 4.13 fewer games per match. Also, there were

more 3 set matches played than predicted and fewer 5 set matches. This gives

some indication that the i.i.d. model may need to be revised.

6.3.6 Using the model for gambling

For head-to-head betting we will place a bet only when there is a positive overlay

as represented by:

Overlay = [Our Probability ×Bookmakers Price]− 1

A method developed by Kelly, discussed in Haigh [30], calculates the pro-

portion of bankroll you should bet depending on your probability and the book-

maker’s price and is represented below:

Proportion of bankroll to gamble =
Overlay

Bookmakers Price− 1

This is also equivalent to expected gain
maximum gain
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Figure 6.1: Profit obtained from betting on head-to-head matches played at the
2003 Australian Open

For example: Suppose player A was paying $2.20 to win, and player B was paying

$1.65 to win. Suppose we predicted player B to win with probability 0.743.

In this situation we would bet on player B as given by a positive overlay:

[0.743× 1.65]− 1 = 0.226

Proportion of bankroll to gamble = 0.226
1.65−1

= 0.348

Figure 6.1 represents how we would have performed by adopting a constant

Kelly system (fixed bankroll) of $100 for the head-to-head matches played at the

2003 Australian Open. It can be observed that we would have suffered a $195

loss by our 72nd bet but still ended up with a $45 profit. This recovery came

from round 3 (bet number 75) onwards, where at that point we were down $147.

By updating the parameters after each round by simple exponential smoothing

some important factors such as court surface, playing at a particular tourna-

ment, playing in a grand slam event and recent form would be included in the

predictions.

Jackson [39] outlines the operation of index betting with some examples in

tennis through binomial-type models. The outcome of interest X is a random
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variable and for our situation is the number of games played in a tennis match.

The betting firm offers an interval (a, b), known as the spread. The punter may

choose to buy X at unit stake y, in which case receives y(X− b) or sell X at unit

stake z, in which case receives z(a−X).

We will place a bet only when our predicted number of games is greater than

b or less than a. For example if an index is (35,37), we would sell if our prediction

is less than 35 games or buy if our prediction is greater than 37 games. We will

use a very simple betting system, and that is to trade 10 units each time the

outcome is favourable. Figure 6.2 represents how we would have gone by using

our allocated betting strategy, for a profit of $435. This was as high as $480 but

as low as -$220. We also made $420 from one match alone being the El Aynaoui

versus Roddick match where a total of 83 games were played. Without including

this match we would have still made a profit of $60. Unlike head-to-head betting,

there does not appear to be any advantage by betting from later rounds. We can

generate a profit from the start of the tournament. Perhaps the bookmakers are

not as proficient in estimating the number of games played in a match as they

are with the probabilities of winning the match. The bookmakers are always

trying to balance their books where possible so that they gain a proportion of

the amount gambled each match regardless of the outcome. This implies that

general public are unable to predict the number of games played in a match as

well as probabilities of players winning. Figure 6.3 represents how we would have

gone by subtracting an additional 4.13 games per match from our predictions.

This gave a profit of $285, despite the fact that no money was bet on the El

Aynaoui versus Roddick match, which made a $420 profit from Figure 6.2.
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Figure 6.2: Profit obtained from index betting on matches played at the 2003
Australian Open

Figure 6.3: Profit obtained from index betting on matches played at the 2003
Australian Open by subtracting 4.13 games per match from our predictions

6.3.7 Improving match predictions

The ATP tour statistics are based on all the matches played throughout the

Champions Race and are not separated into the different court surfaces, to reflect

how players perform on different surfaces.

As previously stated, the ITF tennis website www2.itftennis.com/PD/select.htm

did provide the overall percentages of matches won for each player for hard
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court, grass, clay and carpet. Of all the tournaments played in the Champi-

ons Race, 31 are played on hard court, 25 on clay, 6 on grass and 6 on car-

pet. Let msi = proportion of matches won for player i on surface s, where

s ∈ {g = grass, h = hard court, c = clay, t = carpet}. Let moi be the overall

percentage of matches won for player i. This data can be used to adjust for how

player’s perform on different surfaces.

For example: Suppose player i has the following percentage wins on the dif-

ferent surfaces: mgi = 83.5%,mhi = 80.6%,mci = 62.5%,mti = 80.2%,moi =

77.8%. Suppose player i was playing at Wimbledon, then they would gain an

increase in the probability of winning a point on serve and return of serve, since

mgi − moi = 5.7% > 0. A player winning 62.5% on serve against an average

player winning 61.6% on serve, has a 50%+5.7% = 55.7% chance of winning the

match. Since only 6 out of 68 tournaments in the Champions Races are played

on grass, player i increases his chance of winning a point on serve and return of

serve by
(0.625−0.616)( 1

3
÷ 6

68
)

2
= 0.017

Although this method may improve the predictions for the majority of matches,

it could be disastrous for matches where players have only played a small number

on particular surfaces. In particular, with only 6 tournaments played on grass in

the Champions Race, this provides little or no opportunity for some players to

obtain grass court results.

The bookmaker’s prices provide some indication to how players are likely to

perform on a particular match. Conversion from prices to probabilities is obtained

by the following formula:

pij =
xj

xi + xj

where:
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pij represents the probability of player i winning the match against player j

xj represents the price set for player j

xi represents the price set for player i

It may help to improve the overall predictions by combining the bookmaker’s

estimates with our estimates as follows:

aijk = αkbijk + (1− αk)cijk

where:

aijk is the combined probability of player i defeating player j in round k

bijk is the probability of player i defeating player j in round k based on our

estimates

cijk is the probability of player i defeating player j in round k based on the

bookmaker’s estimates

αk = weighting for round k

Weighting in the bookmaker’s estimates in rounds 1 and 2 of the 2003 Aus-

tralian Open head-to-head betting would have increased the overall profit for the

tournament, since we were making a loss in these rounds.

6.4 Predicting a long match at the 2003 Aus-

tralian Open

The player statistics obtained for the Roddick-El Aynaoui quarter-final match

played at the 2003 Australian Open, based on the ATP tour statistics, are given

in columns 2 to 6 of Table 6.10, along with the average statistics for the top 200



130

players. The same notation used earlier in the chapter for serving and receiving

statistics applies. Unfortunately it is not possible to put exact standard errors on

these estimates since they do not give the total number of points on which these

statistics are based. However the estimates for both Roddick and El Aynaoui

are based on over 70 matches. Since a 3 set match averages about 165 points,

we can estimate their statistics are based on about 12000 points. This gives a

standard error of less than half a percentage point. The average tour statistics

are based on 5794 matches, which results in an estimated standard error of less

than 0.05 of a percentage point. Thus we can say the individual player statistics

are correct to within one percentage point, and the overall tour averages to within

0.1 percentage point.

The statistics clearly show the serving superiority of Roddick and El Aynaoui.

Both players, but particularly El Aynaoui, get a higher percentage than average

of first serves into play. Both players, but particularly Roddick, win a higher

than average percentage of points on their first serve when it goes in, and both

players win a higher than average percentage of points on their second serve. On

the other hand, both players have only average returning statistics.

Player (i) ai bi ci di ei fi gi

Roddick (1) 62.2% 80.7% 55.7% 29.5% 48.1% 71.3% 37.2%
El Aynaoui (2) 65.2% 75.2% 50.9% 29.5% 48.9% 66.7% 37.5%
Average (av) 58.7% 69.2% 49.2% 28.7% 49.0% 61.6% 38.4%

Table 6.10: ATP tour statistics for Roddick and El Aynaoui

If we let i=1 represent Roddick and i=2 represent El Aynaoui, then from

Equations 6.3.1 and 6.3.2, f1=71.3%, g1=37.2%, f2= 66.7%, g2=37.5%. These

are shown in columns 7 and 8 of Table 6.10, again along with the tour averages.

The tour averages have been normalized, as clearly on average the percentage
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won on serve and return of serve must sum to 100%. These statistics show that

while both players win slightly less than an average percentage of their opponent’s

serves, they win a much higher percentage of their own serves than the average

player. However Roddick is clearly the better player.

Applying Equations 6.3.3 and 6.3.4 to combine the individual player statistics,

gives Roddick to win 72.3% of his serves and 32.0% of El Aynaoui’s serves, with

El Aynaoui winning 68.0% of his serves and 27.7% of Roddick’s serves.

Table 6.11 represents some resultant predicted statistics for the match between

Roddick and El Aynaoui played at the 2003 Australian Open. The mean number

of games in a set and a match are calculated for each player serving first in the

set.

Parameter Scoring unit Roddick El Aynaoui
Probability of winning point on serve 72.3% 68.0%

game on serve 92.6% 87.5%
tiebreaker game 57.5% 42.5%
tiebreaker set 63.1% 36.9%
advantage set 65.5% 34.5%
tiebreaker match 73.4% 26.6%
advantage match 74.2% 25.8%

Mean number of games tiebreaker set 10.8 10.9
advantage set 14.6 14.7
tiebreaker match 43.8 43.8
advantage match 45.0 45.0

Standard deviation of number of games tiebreaker set 1.9 1.8
advantage set 9.0 8.9

Table 6.11: Predicted parameters for the Roddick-El Aynaoui match played at
the 2003 Australian Open

It can be observed from Table 6.10, that both players are above the ATP tour

averages for percentage of points won on serve and just below the ATP tour av-

erages for percentage of points won returning serve. When the player’s statistics
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are combined together we find that both players are still above the tournament

averages for percentage of points won on serve and below the tournament av-

erages for percentage of points won returning serve. From Table 6.11, Roddick

is expected to win 72.3% of points on serve and El Aynaoui is expected to win

68.0% of points on serve. Roddick is expected to win 92.6% of games on serve

and El Aynaoui 87.5%. This means it will be difficult for either player to break

serve and if the match does reach 6 games-all in the advantage fifth set there

is a possibility it will go on for a long time. Table 6.12 gives the chances of an

advantage set reaching various score lines from 6 games-all. There is a 37.2%

chance the set will reach 6 games-all. Conditional on the set reaching 6 games-

all, there is a 0.926 × 0.875 + 0.074 × 0.125 = 81.9% chance it will reach 7-7,

(0.926×0.875+0.074×0.125)2 = 67.1% chance of reaching 8-8 and so on (where

0.926 and 0.875 are the probabilities of Roddick and El Aynaoui winning games

on serve respectively).

Score line Chances (%)
6-6 100.0
7-7 81.9
8-8 67.1
9-9 55.0
10-10 45.1
11-11 36.9
12-12 30.3
13-13 24.8
14-14 20.3
15-15 16.7
16-16 13.7
17-17 11.2
18-18 9.1
19-19 7.5

Table 6.12: Chances of reaching a score line from 6 games-all in an advantage set
for the Roddick-El Aynaoui match
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Klaassen and Magnus [44] show that while the probability of a player winning

is dependent on fij − fji, the expected length of the match is highly dependent

on fij + fji. The Roddick-El Aynaoui match stood out amongst the other men’s

singles matches played at the 2003 Australian Open, as this match had the highest

predicted total for the combined percentages of points won on serve, given as

72.3% + 68.0% = 140.3%. The match also had the highest expected number of

games for an advantage set (14.6-14.7) along with the highest standard deviation

on the number of games played in an advantage set (8.9-9.0). For this reason

we can conclude that if there was going to be a long fifth set played at the 2003

Australian Open men’s singles, it would most likely come from the Roddick-

El Aynaoui match. In the actual match both players actually served slightly

better than predicted, with Roddick winning 75.8% and El Aynaoui 70.6% of

serves. This combined total of 146.4% was the highest from all the men’s singles

matches played at the 2003 Australian Open, and easily exceeded the average of

123.2%. Roddick won the match 21-19 in the advantage fifth set.

Punters or bookmakers betting on tennis need to have a clear idea of the effect

of different scoring systems. The US Open plays a tiebreaker game at 6 games-all

in the fifth set, whereas the other grand slams play an advantage fifth set. From

Table 6.11, depending on who starts serving, the expected number of games

(standard deviation) for the Roddick-El Aynaoui match is 10.8 (1.9) or 10.9 (1.8)

for a tiebreaker set and 14.6 (9.0) or 14.7 (8.9) for an advantage set. Clearly the

type of set is of paramount importance if betting on the length of a set. The

large standard deviation for advantage sets shows that index betting, where the

payoff depends on the difference between the expected and actual length, would

be more risky for both punter and bookmaker. On the other hand, the expected

length of an advantage set, alters only marginally depending on who serves the
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first game, which would allow a bookmaker to set odds well before the set began.

Interestingly, the effect of a tiebreaker fifth set on the length of a match is much

less than on a set, since it is not certain a fifth set will be played. Playing a

tiebreaker fifth set also reduces slightly the favourite’s chances of winning. In

this case Roddick has a 74.2% chance of winning the five set advantage match,

compared to 73.4% if the tiebreaker is applied at 6 games-all in the fifth set.

However this small difference magnifies as the match progresses. From 2 sets-all

going in to the final set, Roddick had a 65.5% chance of winning the match,

compared to 63.1% if a tiebreaker set is played. From 6 games-all in the final set,

Roddick has a 64.0% chance of winning the match compared to only 57.5% if a

tiebreaker game is played. The very small virtually negligible advantage to the

better player at the start of the match gradually increases the nearer the state

of the match approaches 6 games-all in the final set. At the start of the match

there is a trade-off between an extra 0.8% chance of winning versus an expected

1.2 games. By the start of the fifth set it is 2.4% versus 3.8 games. At 6-6 in the

fifth set the trade-off is between 6.5% versus 10.1 games. A punter betting as the

game progresses would need to understand such subtleties.

There was a match between Arnaud Clement and Fabrice Santoro played at

the 2004 French Open that lasted for 6 hours 36 minutes. Although only 71 games

were played in this match, the time duration was longer than the Roddick versus

El Aynaoui match played at the 2003 Australian Open. Table 6.13 represents the

percentage of points won on serve for each player for each set and the time taken

to complete each set with the corresponding game score. It took an average time

of 55.75 minutes to play each set in the first four tiebreaker sets. These relatively

long tiebreaker sets must be due to the length of time to play each game, which

is a combination of the number of points played in the game and the length of
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Serving statistics (%)
Clement Santoro Time (min) Score

Set 1 56 61 51 4-6
Set 2 50 64 46 3-6
Set 3 55 56 74 7-6
Set 4 57 43 52 6-3
Set 5 64 64 173 14-16
Match 58 60 396

Table 6.13: Statistics for each set obtained from the Clement versus Santoro
match played at the 2004 French Open

time to play each point. The average percentage of points won on serve for each

player in the first four sets is 54.5% for Clement and 56.0% for Santoro, which are

both less than the ATP tour average of 61.6%. Since there is a lack of dominance

on serve, it is most likely that the length of time to play each point is higher

than the ATP tour average time to play each point. Notice that the percentage

of points won on serves for each player in the fifth advantage set is 64%, which

is at least as high as any of the other sets, contributing to the 30 games and

173 minutes to play the final set. The methods developed in Chapter 3, can be

applied to estimate the time duration in a match.

6.5 Summary

Using our Markov chain model obtained in Chapter 2, we were able to forecast

outcomes of tennis matches played at the 2003 Australian Open. The predictions

were compared against bookmaker prices, and there is some indication that we

can generate a long-term profit. Improvements to the predictions were also dis-

cussed. We were able to predict that the elite Australian male tennis players are

more likely to perform better at the US Open than at the Australian Open. A
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model was set up to show why Agassi had a better chance of winning all four

grand slams when compared to Sampras, even though Sampras was expected to

win more grand slams overall. We were able to predict a long match between

Roddick and El Aynaoui played at the 2003 Australian Open, in the sense that

out of all matches played at the Australian Open, this match was most likely to

go on the longest if an advantage fifth set was obtained. It was outlined why

punters or bookmakers betting on tennis as the match is in progress need to have

a clear idea of the effect of different scoring systems. The next chapter focuses

on forecasting during a match in progress.



Chapter 7

FORECASTING DURING A

MATCH IN PROGRESS

7.1 Introduction

Klaassen and Magnus [44] forecast the winner of a tennis match in progress

based on ATP rankings and point-by-point data. In the conclusion they quote

“One could think of a Bayesian updating rule, where the prior estimates of p̂a

and p̂b, obtained before the match starts, and the likelihood comprises the match

information up to the current point. This would lead to posterior estimates of

pa and pb. Whether the forecast error is actually reduced by such a refinement is

still an open question.”

Using the Markov chain model, we demonstrate how to predict the winner

for a match in progress, and show how the predictions can be improved by using

an updating rule to update the prior estimates with what has actually occurred

during the match. An example is given from the El Aynaoui versus Roddick

match played at the 2003 Australian Open. If fij represents the percentage of

137
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points won on serve for player i, when player i meets player j in a tournament,

then it is shown that fij + fji under certain assumptions, is independent on how

player’s perform individually on different surfaces. This value is shown to be very

useful for setting bookmaker prices. An example is given for betting on the point

score in a game for a match in progress.

7.2 Head-to-head match predictions in real-time

7.2.1 Data

Tennis Australia provided us with the point-by-point data from the 2003 Aus-

tralian Open. This data was encrypted in ANSCII code. After writing a program

in GW Basic that converted the ANSCII code to a text file, the data could then

be read into spreadsheets for analysis. Each point of a match is represented by

a string of numbers referring to the type of point that was played. For example,

Table 7.1 represents the first game that was played at the 2003 Australian Open

between Llyeton Hewitt and Alberto Martin. The coding can be interpreted as

follows, as outlined in Clarke [15]:

• Set represents which set is being played.

• Point For represents the number of points Hewitt has won in the current

game.

• Point Against represents the number of points Martin has won in the

current game.

• Game For represents the number of games Hewitt has won in the current

set.
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Set Point Point Game Game Server 1st 2nd Last Point Point At
For Against For Against Srv Srv Play Act 1 Act 2 Net?

1 0 0 0 0 2 1 0 2 1 3 0
1 0 1 0 0 2 1 0 1 1 2 0
1 0 2 0 0 2 1 0 2 1 1 0
1 1 2 0 0 2 1 0 2 2 1 0
1 2 2 0 0 2 2 1 2 2 2 1
1 3 2 0 0 2 1 0 1 1 1 0
1 3 3 0 0 2 2 1 2 2 1 0
1 4 3 0 0 2 1 0 2 1 2 2
1 4 4 0 0 2 1 0 1 1 1 0
1 4 5 0 0 2 1 0 1 1 1 0
1 0 0 0 1 1 1 0 2 1 2 0

Table 7.1: 2003 Australian Open data of the first game played between Hewitt
and Martin

• Game Against represents the number of games Martin has won in the

current set.

• Server represents which player is currently serving: 1 if Hewitt is serving

and 2 if Martin is serving.

• 1st Srv represents the different outcomes that can occur on the 1st serve:

1 if serve is in play, 2 if serve is a fault, 3 if serve is a winner and 4 if serve

is an ace.

• 2nd Srv represents the different outcomes that can occur on the 2nd serve

with the same number coding as 1st Srv.

• Last Play represents the last player to make a play on the ball: 1 if Hewitt

made the last play, 2 if Martin made the last play.

• Point Act 1 represents the type of stroke that was made on the Last

Play: 1 for forehand, 2 for backhand, 3 for overhead and 4 for volley.
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• Point Act 2 represents the outcome of Point Act 1: 1 for unforced error,

2 for forced error and 3 for winner.

• At Net? represents whether a player was at the net at the Last Play: 1

for Hewitt and 2 for Martin.

As a result of this coding, the first point played in the match can be interpreted

as: Martin was serving, the 1st serve was in play, Martin had the last play in the

point and hit a forehand winner to win the point.

This point-by-point data is summarized during the match and published

through the internet (www.ausopen.org). Examples for the different grand slam

events were given in Tables 6.3 and 6.4. Since service winners are classified sepa-

rately from aces, it is clear that the percentage of points resulting in aces, double

faults, unforced errors, winners (including service) and forced errors is equal to

100%. This allows us to calculate the percentage of points resulting in forced

errors, where this statistic is not given directly from the match summary.

7.2.2 Probability of winning from any state of the match

The equation for the probability of player A winning a best-of-5 set tiebreaker

match from (e, f) in sets, (c, d) in games, (a, b) in points, player A serving is

represented by:

P
pm

T
A (a, b : c, d : e, f) = P pg

A (a, b)P
gs

T
B (c + 1, d)P sm

T (e + 1, f)+

P pg
A (a, b)[1− P

gs
T

B (c + 1, d)]P sm
T (e, f + 1)+

[1− P pg
A (a, b)]P

gs
T

B (c, d + 1)P sm
T (e + 1, f)+

[1− P pg
A (a, b)][1− P

gs
T

B (c, d + 1)]P sm
T (e, f + 1), if (c, d) 6= (6, 6)

P
pm

T
A (a, b : c, d : e, f) = P

pg
T

A (a, b)P sm
T (e+1, f)+ [1−P

pg
T

A (a, b)]P sm
T (e, f +1),

if (c, d) = (6, 6)
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Similar equations can be produced for a best-of-5 set advantage match and

the mean number of points remaining in a match from any state of the match.

7.2.3 Computer program

A computer program was written in Visual Basic for Applications (VBA) to

predict outcomes of tennis matches on a point-by-point basis, for a match in

progress. To initialize the start of a match the current score for each player is

0 points, 0 games and 0 sets. The type of match being played; a tiebreaker or

advantage match and who is serving first in the match needs to be entered along

with the initial parameters for each player winning a point on serve. The initial

parameters are calculated by the methods outlined in Section 6.3 and entered

into the Markov chain model to predict the probability of players winning the

current game, set and match. The probability of players winning the match at 0

points played are also plotted on a chart.

After each point has been played the current score is updated based on the

2003 Australian Open point-by-point data to represent the number of points,

games and sets each player has won and who is currently serving. Equations that

calculate the probability of players winning the game, set and match, from any

position in the match, are implemented in the program to update the probability

of players winning the current point, game, set and match. The probability

of players winning the match after each point has been played is plotted on a

chart to give a graphical representation on how the match is unfolding. We will

demonstrate these procedures from the El Aynaoui-Roddick match played in the

quarter-finals at the 2003 Australian Open.
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7.2.4 Example: El Aynaoui-Roddick match

Roddick is serving first at the start of a best-of-5 set advantage match. El Aynaoui

won the first point, by Roddick coming to the net and making a forced error on

the volley. As a result of winning this point, El Aynaoui’s probability of winning

the current game, set and match have increased, as represented in Table 7.2.

After 10 points had been played El Aynaoui broke serve and is now the favourite

to win the set. This can be observed from Table 7.2, where at the start of the

match El Aynaoui had a 0.369 probability of winning the set, which increased to

0.408 after winning the first point, and to 0.735 after winning the first game.

Probability of winning current
Score Players Point Game Set Match

Start of match El Aynaoui 0.277 0.074 0.369 0.258
Roddick 0.723 0.926 0.631 0.742

After 1 point El Aynaoui 0.277 0.171 0.408 0.270
Roddick 0.723 0.829 0.592 0.730

After 1 game El Aynaoui 0.680 0.875 0.735 0.376
Roddick 0.320 0.125 0.265 0.624

Table 7.2: Predictions for a match between El Aynaoui and Roddick played at
the 2003 Australian Open

Figure 7.1 represents the chances of players winning the match based on this

game. This process continues for each point being played and Figure 7.2 repre-

sents the completed match.

Table 7.3 represents the 22nd game played in the fifth set, where Roddick

is serving for the match. Roddick’s score is represented first, followed by El

Aynaoui’s score. At 30-15 in this game, El Aynaoui’s probability of winning

the match was almost zero. This can be observed in Figure 7.2 by the relative

minimum after 373 points have been played. After 375 points have been played
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Figure 7.1: Match predictions for the first game played between El Aynaoui and
Roddick

Figure 7.2: Match predictions for the match played between El Aynaoui and
Roddick

El Aynaoui’s probability of winning the match were 0.133 and after winning this

point his probability of winning the match jumped to 0.360. This relatively large

increase in probability is a result of the importance of the point 30-40 in the

match, as a result of Theorem 4.2.5.

Clarke and Norton [15] describe how statisticians enter the point-by-point
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Point played Point Score Game Score Probability of El Aynaoui winning
370 0-0 11-10 0.027
371 0-15 11-10 0.062
372 15-15 11-10 0.035
373 30-15 11-10 0.015
374 30-30 11-10 0.046
375 30-40 11-10 0.133
376 0-0 11-11 0.360

Table 7.3: The probabilities of winning the match for the 22nd game played in
the fifth set between El Aynaoui and Roddick at the 2003 Australian Open

data for a match in progress, and how the data is coded through a central com-

puter. Our model could read in each point in real-time and update the proba-

bilities of winning the current point, game, set and match for each player. This

would provide spectators with an objective based analysis on how the match is

progressing and this information could be transmitted via the internet, television

or mobile phone technology.

7.2.5 Bayesian updating rule

Consider the binomial distribution with Y the number of events in n independent

trials and θ the event probability. The sampling distribution is defined as

P (Y = y|θ) =

(
n

y

)
θy(1− θ)n−y

The posterior distribution of θ given Y is calculated in Carlin and Louis [10]

and is Beta(a, b) with mean

θ̂ =
M

M + n
µ +

n

M + n

(
Y

n

)
(7.2.1)

and variance V ar(θ|Y ) = θ̂(1−θ̂)
M+n
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where: M = a + b, µ = a
a+b

We can apply this distribution to tennis by letting ni = the number of points

served by player i, µi = initial percentage of points won on serve for player i,

Yi

ni
= actual percentage of points won on serve for player i and M = weighting

parameter. This allows us to calculate θ̂i, the updated percentage of points won

on serve for player i.

When M → ∞, θ̂i = µi, and therefore µi becomes constant throughout the

match.

When M = 0, θ̂i = Yi

ni

Dowe et al. [21] developed a method in football tipping competitions to prop-

erly reward the predictions. The reward function that they developed is as follows.

If a tipster assigns probability p to a win by team A, then the score for the tipster

on that game is:

1 + log2p, if A wins;

1 + log2(1− p), if A loses.

This method is equivalent to calculating the likelihood of the predictions, but

ensures that p = 1
2

gives a score of 0.

These equations can be applied to tennis for finding the best value M for

predicting a tennis match in progress. Let pj represent the probability of player

A winning the match at j points played and xj represent 1 + log2pj, if A wins

or 1 + log2(1 − pj) if A loses. The total reward R to the estimates is simply

calculated by:

R =
∑

j

xj
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A sample of 8 matches are chosen from all the matches played at the 2003

men’s Australian Open, to calculate the reward R for different values of M . Ta-

ble 7.4 lists the sample of matches to be tested along with the initial parameters.

For the first four matches in the table, the player that we predicted to win from

the start of the match, ended up losing the match. For the last four matches

in the table, the player that we predicted to win from the start of the match,

actually won the match. The match number can be interpreted as follows: the

first digit represents the round and the last two digits represent the order of the

match according to the draw. For example 304 represents the fourth match in

the third round.

Match Players Initial parameters
304 Youzhny 0.583

Novak 0.621
307 Nalbandian 0.598

Malisse 0.603
310 Sargsian 0.633

Philippoussis 0.676
313 Costa 0.618

Mantilla 0.591
403 Shuettler 0.607

Blake 0.576
405 Ferrero 0.643

Sargsian 0.612
406 Ancic 0.580

Ferrero 0.655
501 El Aynaoui 0.680

Roddick 0.723

Table 7.4: The initial parameters for players from a sample of matches played at
the 2003 Australian Open

The different values of M to be tested are:

M1 = expected number of points remaining
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M2 = expected number of points remaining on serve for player i

M3 = 60

M4 = 80

M5 = 100

M6 =→∞

There is no reason why M needs to fixed for the entire match, as indicated

from above in M1 and M2. The expected number of points remaining on serve

for player i is approximated by Mpm(a,b:c,d:e,f)
2

. The results are represented in

Table 7.5.

M1 M2 M3 M4 M5 M6
304 25.09 50.56 65.07 52.81 43.38 -28.32
307 -4.68 1.53 -2.76 -3.07 -4.16 -31.08
310 -117.84 -105.6 -109.1 -111.68 -115.13 -182.03
313 -179.4 -202.81 -235.64 -218.54 -207.89 -162.29
403 150.04 154.41 154.97 153.05 151.56 139.17
405 203.27 207.48 208.95 206.94 205.37 192.4
406 144.1 144.98 145.22 144.91 144.6 139.62
501 125.15 95.47 42.87 70.42 86.67 138.69

Total 345.73 346.02 269.58 294.84 304.4 206.16

Table 7.5: Comparing different values of M , the weighting parameter, for 8
matches played at the 2003 Australian Open

The total of this sample of 8 matches for M6 is less than the total for all other

values of M . This suggests that updating the initial estimates as the match is

progressing, is superior to not updating. It appears that values of M = 80 or

100, is superior to M = 60. It also appears that M1 and M2 give the best values

of M .
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7.3 Point score predictions in real-time

Traditionally sports betting is offered on outcomes before the event has been

played. For example you can bet on who you think will win a tennis match

between two players or on the actual set score you think will occur. With the

ease of online betting through the internet, it is now possible to bet on outcomes

as the match is progressing.

Sportsbet 21 is a spin-off company developed under Swinburne University’s

intellectual property arrangements. The proposal for betting on singles tennis,

is to bet on the point score in completed ordinary games - i.e. server or receiver

wins to 0, 15, 30 or deuce. This essentially gives two separate ‘games’, depending

on who’s serving. For a regular game the probabilities of the server/receiver

winning in a particular point score can be calculated from our Markov chain

model. Alternatively these probabilities can be calculated explicitly from the

binomial theorem as represented in Table 7.6. Once the bookmaker decides on

the market percentage, these probabilities can be converted to prices, as outlined

in Croucher [20], for betting by the punter. Our task is to establish the initial

estimates pA and pB.

Score Server wins to Server loses to
0 p4 (1− p)4

15 4p4(1− p) 4p(1− p)4

30 10p4(1− p)2 10p2(1− p)4

deuce 20p5(1−p)3

p2+(1−p)2
20p3(1−p)5

p2+(1−p)2

Table 7.6: Probabilities of players winning or losing a game to 0,15,30 or deuce
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The initial estimates of pA and pB for a match are calculated using the meth-

ods from Section 6.3, without including the methods from Subsection 6.3.7. How-

ever, the bookmaker’s head-to-head prices are incorporated into the initial esti-

mates. Klaassen and Magnus [44] show the probability of winning the match

is not very dependent on pA + pB, but only on pA − pB. Therefore we will fix

pA + pB and alter pA − pB until we get the same probability of winning a match

that is offered by the bookmaker. For example: suppose we estimate players A

and B to have probabilities pA = 0.61 and pB = 0.58. Based on our Markov chain

model this equates to a probability of 0.688 for player A to win a best-of-5 set

advantage match. However if the bookmaker’s odds are paying $1.45 for player

A to win and $2.55 for player B to win, then this only equates to a probability

of 2.55
2.55+1.45

= 0.6375 for player A to win. A player with a probability of 0.6375 to

win the match, has approximately a 0.022 advantage of winning a point on serve.

Therefore the two simultaneous equations: pA + pB = 1.19 and pA − pB = 0.022

are obtained to solve for pA and pB. This gives the adjusted initial estimates of

pA = 0.604 and pB = 0.584. Notice these values are slightly less than the initial

estimates, since bookmaker’s prices predict a greater probability for player B to

win the match than we predicted.

There are a number of reasons why the bookmaker’s odds are used to set

the initial values. Firstly, this could better reflect how the public are likely to

bet. The bookmaker’s job is to set odds such that their books are balanced and

they can generate a profit regardless of the outcome. Also there may be certain

factors not taken into account in our predictions model that the public may be

more astute about. Such factors could be tiredness or an injury on a day that

may affect a player’s performance.

How a player performs on a particular court surface could be incorporated



150

into the model to calculate the initial estimates, by using the methods developed

in Subsection 6.3.7. However, the method developed in this section for adjusting

to how player’s perform on different surfaces, has advantages over the methods

developed in Subsection 6.3.7. For example: Suppose that player A has a greater

probability of winning against player B than we predicted based on our model,

as a result of the court surface. As a consequence of player A’s probability of

winning increasing, suppose player A’s probability of wins on serve and return

of serve increase by x, and player B’s probability of wins on serve and return of

serve decrease by x. Using Equation 6.3.3, to combine individual player statistics,

gives the following:

fij = ft + (fi + x− fav)− (gj − x− gav)

fji = ft + (fj − x− fav)− (gi + x− gav)

It can easily be observed that fij + fji is independent of x, and therefore does

not depend on how players perform on individual surfaces.

This method of obtaining estimates for setting bookmaker prices, can be used

for other types of bets, including betting on the number of games played in a

tennis match through indexing betting (outlined in Chapter 6).

Updating the initial estimates after each game has been played, was calculated

by Equation 7.2.1. The system has been running since Wimbledon 2003 and

generating the expected margins.

7.4 Summary

It has been demonstrated, by using the point-by-point data from the 2003 Aus-

tralian Open, how the outcome of a match can be predicted in real-time. A

Bayesian updating rule can be used in the model, to update the prior estimates
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with what is actually occurring throughout the match. This updating rule gives

some indication that the predictions are improved. It is shown how our estimates

of the sum of the probabilities of players winning a point on serve, can be applied

to setting bookmaker prices, even though our predictions of two players winning

a match do not account for how players perform on different surfaces.



Chapter 8

REVISED MARKOV CHAIN

MODEL

8.1 Introduction

There are works in the literature to show that the assumption of points in a

match being i.i.d. does not hold. Jackson [38], and Jackson and Mosurski [40]

show that psychological momentum does exist in tennis, and set up a “success-

breeds-success” model for sets in a match, and find that this model provides a

much better fit to the data, compared to an independence of sets model. Klaassen

and Magnus [43] test whether points in tennis are i.i.d. They show that winning

the previous point has a positive effect on winning the current point, and at

important points it is more difficult for the server to win the point than at less

important points.

In this chapter, a revised Markov chain model is formulated for sets in a

match that allows for players that are ahead on sets, to increase their probability

of winning the set, compared to their probabilities of winning the first set. It

152
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appears that a revised model is necessary from the results found in the literature,

and from our forecasting predictions in Chapter 6. In particular, we predicted on

average 4.13 games more than what actually occurred based on our i.i.d. Markov

chain model. There were also more 3 set matches and less 5 set matches played

than what we predicted.

8.2 Revised model

8.2.1 Probabilities of reaching score lines within an ad-

vantage match

As stated in Chapter 2, ps and ps
T represent the probabilities of player A winning

an advantage and tiebreaker set respectively, and N sm(e, f |k, l) represents the

probabilities for player A of reaching a set score (e, f) from set score (k, l) in an

advantage match. If either player that is ahead on sets, increases their probability

of winning a set by α, the forward recursion formulas become:

N sm(e, f |k, l) = ps
T N sm(e− 1, f |k, l), for (e, f) = (1, 0)

N sm(e, f |k, l) = (1− ps
T )N sm(e, f − 1|k, l), for (e, f) = (0, 1)

N sm(e, f |k, l) = psN sm(e− 1, f |k, l), for (e, f) = (3, 2)

N sm(e, f |k, l) = (1− ps)N sm(e, f − 1|k, l), for (e, f) = (2, 3)

N sm(e, f |k, l) = (ps
T + α)N sm(e− 1, f |k, l), for (e, f) = (3, 0), (2, 0) and (3, 1)

N sm(e, f |k, l) = (1−ps
T +α)N sm(e, f −1|k, l), for (e, f) = (0, 3), (0, 2) and (1, 3)

N sm(e, f |k, l) = (ps
T − α)N sm(e − 1, f |k, l) + (1 − ps

T )N sm(e, f − 1|k, l), for

(e, f) = (1, 2)

N sm(e, f |k, l) = ps
T N sm(e−1, f |k, l)+(1−ps

T −α)N sm(e, f−1|k, l), for (e, f) =

(2, 1)
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N sm(e, f |k, l) = (ps
T − α)N sm(e− 1, f |k, l) + (1− ps

T − α)N sm(e, f − 1|k, l), for

(e, f) = (1, 1) and (2, 2)

where: 0 ≤ ps
T + α ≤ 1 and 0 ≤ ps + α ≤ 1

The boundary values are N sm(e, f |k, l) = 1 if e = k and f = l.

When α = 0, the formulas reflect the Markov chain model presented in Chapter

2.

Table 8.1 represents the probabilities of playing 3, 4 and 5 set matches when

α = 0 and 0.06, for different values of pA and pB. The probability of playing

3 sets is greater when α = 0.06 compared to α = 0, for all pA and pB. The

probability of playing 5 sets is greater when α = 0 compared to α = 0.06, for all

pA and pB.

α = 0 α = 0.06
pA pB ps

T 3 sets 4 sets 5 sets 3 sets 4 sets 5 sets
0.60 0.60 0.50 0.25 0.38 0.38 0.31 0.38 0.30
0.61 0.60 0.53 0.25 0.37 0.37 0.32 0.38 0.30
0.62 0.60 0.57 0.26 0.37 0.36 0.33 0.38 0.29
0.63 0.60 0.60 0.28 0.37 0.35 0.35 0.38 0.28
0.64 0.60 0.63 0.30 0.37 0.32 0.37 0.37 0.26
0.65 0.60 0.66 0.33 0.37 0.30 0.40 0.37 0.23
0.66 0.60 0.69 0.36 0.37 0.27 0.43 0.36 0.21
0.67 0.60 0.72 0.40 0.36 0.24 0.47 0.34 0.19
0.68 0.60 0.75 0.43 0.35 0.21 0.51 0.33 0.16
0.69 0.60 0.77 0.47 0.34 0.19 0.55 0.31 0.14
0.70 0.60 0.79 0.51 0.33 0.16 0.60 0.29 0.11

Table 8.1: Distribution of the number of sets in an advantage match when α = 0
and α = 0.06

From our forecasting predictions in Chapter 6, it was noticed that on aver-

age the proportion of 3 set matches played are about 7% more than the model



155

predicted and the proportion of 5 set matches are about 7% less than the model

predicted, based on the assumption that the probability of players winning a

point on serve are i.i.d. Notice from Table 8.1, the probability of playing 4 sets is

about the same for both values of α = 0 and 0.06, and the differences in probabil-

ities for playing 3 sets is about 0.07 greater when α = 0.06 compared to α = 0, if

ps
T ≤ 0.75. This was the reason α = 0.06 has been chosen for the revised model.

8.2.2 Conditional probabilities of winning an advantage

match

P sm(e, f) = ps
T P sm(e + 1, f) + (1− ps

T )P sm(e, f + 1), for e = f

P sm(e, f) = (ps
T + α)P sm(e + 1, f) + (1− ps

T − α)P sm(e, f + 1), for e > f

P sm(e, f) = (ps
T − α)P sm(e + 1, f) + (1− ps

T + α)P sm(e, f + 1), for e < f

Boundary values: P sm(e, f) = 1 if e = 3, f ≤ 2, P sm(e, f) = 0 if f = 3, e ≤ 2,

P sm(2, 2) = ps.

Table 8.2 represents the probabilities of player A winning an advantage match

for α = 0 and 0.06, for different values of pA and pB. It can be observed that

the probabilities remain essentially unaffected for all values of pA and pB by

comparing the probabilities of winning the match when α = 0 to α = 0.06.

8.2.3 Mean number of sets remaining in an advantage

match

M sm(e, f) = 1 + ps
T M sm(e + 1, f) + (1− ps

T )M sm(e, f + 1), for e = f

M sm(e, f) = 1 + (ps
T + α)M sm(e + 1, f) + (1− ps

T − α)M sm(e, f + 1), for e > f

M sm(e, f) = 1 + (ps
T − α)M sm(e + 1, f) + (1− ps

T + α)M sm(e, f + 1), for e < f
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pA pB ps
T ps pm : α = 0 pm : α = 0.06

0.60 0.60 0.50 0.50 0.500 0.500
0.61 0.60 0.53 0.54 0.565 0.564
0.62 0.60 0.57 0.57 0.627 0.627
0.63 0.60 0.60 0.61 0.686 0.685
0.64 0.60 0.63 0.64 0.740 0.739
0.65 0.60 0.66 0.67 0.789 0.787
0.66 0.60 0.69 0.71 0.831 0.829
0.67 0.60 0.72 0.74 0.867 0.865
0.68 0.60 0.75 0.76 0.897 0.895
0.69 0.60 0.77 0.79 0.921 0.920
0.70 0.60 0.79 0.81 0.941 0.939

Table 8.2: Probabilities of player A winning an advantage match when α = 0
and α = 0.06

Boundary values: M sm(e, f) = 0 if e = 3, f ≤ 2 or f = 3, e ≤ 2, M sm(2, 2) = 1.

Table 8.3 represents the mean number of sets played in an advantage match

for α = 0 and 0.06, for different values of pA and pB. The mean number of

sets played when α = 0.06 is less than that when α = 0 for all pA and pB. It

was observed from Chapter 6 that on average 4.13 games were occurring less per

match than predicted. This revised model with α = 0.06 accounts for a lesser

number of games, when compared to α = 0. When pA = 0.64 and pB = 0.60, it

can be shown that the reduction in games played in the match is 1.42 using the

revised model with α = 0.06. Similar models could be devised for points within

a game and games within in a set, which may give an even better fit to the data

i.e. account for the remaining 4.13− 1.42 = 2.71 games.
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pA pB ps
T M sm : α = 0 M sm : α = 0.06

0.60 0.60 0.50 4.13 3.99
0.61 0.60 0.53 4.12 3.98
0.62 0.60 0.57 4.10 3.96
0.63 0.60 0.60 4.06 3.93
0.64 0.60 0.63 4.02 3.89
0.65 0.60 0.66 3.97 3.83
0.66 0.60 0.69 3.91 3.78
0.67 0.60 0.72 3.85 3.71
0.68 0.60 0.75 3.78 3.65
0.69 0.60 0.77 3.71 3.58
0.69 0.60 0.79 3.65 3.52

Table 8.3: Mean number of sets played in an advantage match when α = 0 and
α = 0.06

8.2.4 Variance of the number of sets remaining in an ad-

vantage match

V sm(e, f) = ps
T V sm(e + 1, f) + (1 − ps

T )V sm(e, f + 1) + ps
T (1 − ps

T )[M sm(e +

1, f)−M sm(e, f + 1)]2, for e = f

V sm(e, f) = (ps
T + α)V sm(e + 1, f) + (1− ps

T − α)V sm(e, f + 1) + (ps
T + α)(1−

ps
T − α)[M sm(e + 1, f)−M sm(e, f + 1)]2, for e > f

V sm(e, f) = (ps
T − α)V sm(e + 1, f) + (1− ps

T + α)V sm(e, f + 1) + (ps
T − α)(1−

ps
T + α)[M sm(e + 1, f)−M sm(e, f + 1)]2, for e < f

Boundary values: V sm = 0 if e = 3, f ≤ 2 or f = 3, e ≤ 2, V sm(2, 2) = 0.

Table 8.4 represents the variance of the number of sets played in an advantage

match for α = 0 and 0.06, for different values of pA and pB. It can be observed

that when ps
T ≤ 0.57, the variance is greater when α = 0.06 compared to when

α = 0, and when ps
T ≥ 0.60, the variance is less when α = 0.06 compared to

when α = 0.
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pA pB ps
T V sm : α = 0 V sm : α = 0.06

0.60 0.60 0.50 0.609 0.615
0.61 0.60 0.53 0.611 0.616
0.62 0.60 0.57 0.616 0.617
0.63 0.60 0.60 0.621 0.617
0.64 0.60 0.63 0.626 0.614
0.65 0.60 0.66 0.628 0.608
0.66 0.60 0.69 0.625 0.595
0.67 0.60 0.72 0.616 0.576
0.68 0.60 0.75 0.599 0.549
0.69 0.60 0.77 0.576 0.517
0.70 0.60 0.79 0.547 0.479

Table 8.4: Variance of the number of sets played in an advantage match when
α = 0 and α = 0.06

8.2.5 Importance and weighted-importance of sets in an

advantage match

Tables 8.5 and 8.6 represent the importance of sets in an advantage match for

values of α = 0 and 0.06, when pA = 0.64 and pB = 0.60. The importance at

zero sets played in the match is greater when α = 0.06, compared to α = 0.

Tables 8.7 and 8.8 represent the weighted-importance of sets in an advantage

match from (k = 0, l = 0) for values of α = 0 and 0.06, when pA = 0.64

and pB = 0.60. When α = 0.06, zero sets played gives the highest weighted-

importance of sets in a match, followed by one set played, two sets played, three

sets played and four sets played. Therefore, given that a player has M increases

in effort to apply in the match, they should apply these increases on every set of

the match to optimize the usage of their M available increases.
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B score
0 1 2

0 0.32 0.44 0.41
A score 1 0.25 0.46 0.64

2 0.13 0.36 1.00

Table 8.5: Importance of sets in an advantage match when α = 0, for pA = 0.64
and pB = 0.60

B score
0 1 2

0 0.39 0.49 0.37
A score 1 0.27 0.52 0.64

2 0.11 0.36 1.00

Table 8.6: Importance of sets in an advantage match when α = 0.06, for pA = 0.64
and pB = 0.60

B score
0 1 2

0 0.32 0.16 0.05
A score 1 0.16 0.21 0.16

2 0.05 0.16 0.32

Table 8.7: Weighted-importance of sets in an advantage match from (0, 0) when
α = 0, for pA = 0.64 and pB = 0.60

B score
0 1 2

0 0.39 0.18 0.06
A score 1 0.17 0.21 0.15

2 0.05 0.14 0.26

Table 8.8: Weighted-importance of sets in an advantage match from (0, 0) when
α = 0.06, for pA = 0.64 and pB = 0.60
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8.2.6 Coefficients of skewness and kurtosis of the number

of sets in an advantage match

Table 8.9 represents the coefficients of skewness and kurtosis for the number of

sets played in an advantage match for values of α = 0 and 0.06, for different

values of pA and pB. It can be observed that for all values of ps
T , the coefficient

of skewness is greater when α = 0.06 compared to α = 0. When ps
T ≤ 0.57,

the coefficient of kurtosis for α = 0.06 is less than that for α = 0, and when

ps
T ≥ 0.60, the coefficient of kurtosis for α = 0.06 is greater than that for α = 0.

Coef. of skewness Coef. of Kurtosis
pA pB ps

T α = 0 α = 0.06 α = 0 α = 0.06
0.60 0.60 0.50 -0.222 0.020 1.671 1.625
0.61 0.60 0.53 -0.209 0.032 1.663 1.624
0.62 0.60 0.57 -0.173 0.068 1.642 1.624
0.63 0.60 0.60 -0.114 0.126 1.617 1.631
0.64 0.60 0.63 -0.037 0.203 1.597 1.653
0.65 0.60 0.66 0.054 0.295 1.593 1.699
0.66 0.60 0.69 0.161 0.407 1.616 1.783
0.67 0.60 0.72 0.277 0.530 1.672 1.911
0.68 0.60 0.75 0.399 0.663 1.767 2.090
0.69 0.60 0.77 0.530 0.811 1.909 2.339
0.70 0.60 0.79 0.665 0.970 2.099 2.662

Table 8.9: Coefficients of skewness and kurtosis of the number of sets in an
advantage match when α = 0 and α = 0.06

8.3 Summary

Using the revised model with the additional parameter set at α = 0.06, the

probabilities of playing 3, 4 and 5 sets, provide a better fit to the outcomes of

the 2003 men’s Australian Open, compared to the i.i.d. Markov chain model

presented in Chapter 2. This revised model shortens the number of games played
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in a match and gives more positively skewed distributions for the number of

sets played, but the probabilities of winning the match from the outset remain

unchanged. Since the importance at zero sets played becomes considerably more

important with the revised model, a player with an increase in effort to apply

in the match, would be encouraged to apply the increase at zero-all sets in the

match.

Similar models could be devised for points within a game and games within

in a set, which may give an even better fit to the data.



Chapter 9

WARFARE STRATEGIES

9.1 Introduction

In this chapter, formulations are established for any biformat, such that optimal

decisions can be made on where a player/combatant should apply M increases

in effort throughout the contest. There may be costs involved for applying an in-

crease in effort, which appear to be more realistic in a warfare conflict, as opposed

to a tennis match. Other problems analyze the idea of psychological momentum

and also the concept of treating warfare from a game theoretic situation, where

both combatants can apply an increase in effort throughout the warfare conflict.

All the formulations developed throughout this chapter can be effectively applied

to a warfare conflict in real-time.

9.2 Limited resources/no cost problem

The Defence Science of Technology Organization (DSTO) chose to analyze ten-

nis as an analog to warfare, with the aim of using results obtained within ten-

nis, to gain insights that could be used to solve problems related to warfare

162
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(www.unisa.edu.au/misg/Equation free booklet 2003.pdf). By making the fol-

lowing transitions, the models for a tennis match can be transformed into models

for warfare:

skirmish, battle, campaign, war → point, game, set, match

attack/defence→ serve/return

combatants → players

fought → played

Suppose combatant A can apply M increases in effort in a war on any skirmish

fought by increasing pA to pA+ε, pA+ε < 1, and 1−pB to 1−pB+ε, 1−pB+ε < 1,

where pA and pB represent the probability of combatant A and B winning a

skirmish on attack respectively. On which skirmish should combatant A apply

an increase to optimize the usage of the M available increases?

This problem is represented as a limited resources/no cost problem because

a combatant has a limited number of M resources to apply throughout the war

and there is no monetary cost for applying a resource. The limited resources/no

cost problem has been formulated in Chapter 5 for a tennis match. By setting

up tables of values, as outlined in Tables 5.4 and 5.5, for any biformat, the whole

process can be implemented in real-time for increasing effort throughout a war

conflict.

9.3 Unlimited resources/cost problem

Suppose a combatant has a “large” number of available increases in effort avail-

able for use in the war. However there are costs associated for applying an

increase in effort at a particular skirmish (and a reward for winning the war).
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Where should a combatant apply the increases to maximize on the expected

payoff throughout the war?

For this problem it is assumed there are a large number of increases in effort

available for use, and if the allocated M increases run out, the supply can always

be replenished. There is a reward R for winning the overall war and a cost C

for applying an increase at a particular skirmish. Ultimately the hope is to win

the war by applying M increases, to maximize R − MC. There might be a

good chance of winning the war by applying an increase on every skirmish, but

overall the war might be a financial loss because of the high costs associated with

the large number of increases. Clearly if we work in monetary terms there is a

trade-off between the value of winning the war and the number of increases in

effort that are applied. This trade-off might be less attractive if non-financial

considerations are taken into account.

Firstly, consider one level of nesting, such as campaigns within a war, where

G = the cost of applying an increased effort to a campaign in the war. Let X be

a random variable for the payout at (a, b) in a war with no increase and Y be a

random variable for the payout at (a, b) in a war with an increase. Let p represent

the probability of combatant A winning a campaign and P (a, b) represent the

conditional probabilities of combatant A winning the war from campaign score

(a, b).

If E[X] and E[Y ] represent the expected payout at (a, b) in a war with no

increase and with an increase by ε respectively, then:

E[X] = [pP (a + 1, b) + (1− p)P (a, b + 1)]R

E[Y ] = [(p + ε)P (a + 1, b) + (1− p− ε)P (a, b + 1)]R−G

If E[Y ] − E[X] > 0 an increase should be applied at (a, b). E[Y ] − E[X]
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simplifies to Rε[P (a+1, b)−P (a, b+1)]−G, which is equivalent to RεI(a, b)−G.

This implies that an increase should be applied at (a, b) if RεI(a, b)−G > 0, or

equivalently if:

I(a, b) >
G

Rε
(9.3.1)

εI(a, b) represents the increased chance of winning the war by applying an

increase in effort at (a, b). The positive component of the expected payout then

becomes RεI(a, b). However there is a cost G for applying an increase in effort

at (a, b). The negative component of the payout then becomes −G, and the total

payout is RεI(a, b)−G.

Extending this analysis to 3 levels of nesting (skirmishes, battles, campaigns,

war), an increase should be applied at (a, b : c, d : e, f) if:

I(a, b : c, d : e, f) >
C

Rε

9.4 Limited resources/cost problem

To gain some insight to this type of problem, we return to a tennis match. It

was established in Chapter 5 that given one increase in effort in a game of tennis,

this can be applied anywhere in the game before deuce is reached, to optimize

the usage of this increase in effort. However since there are now costs involved,

it would be more cost effective to apply an increase in effort at (3, 1), (2, 2), (1, 3)

or (3, 2), (2, 3), since these points are only played a proportion of the time. Let:

Xn = Rε
∑

a+b=n

W pg(a, b|g, h)− C
∑

a+b=n

Npg(a, b|g, h) (9.4.1)
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where:

n = number points played in the game

R = reward for winning the game

C = cost of applying an increase at a point in the game

Suppose the point score in a game is (g, h), and there is one increase in effort

available in the game. Optimizing the usage of this one available increase can

be assured by applying an increase in effort at (g, h) if X(g+h) ≥ Xn, for all

n > (g + h) and X(g+h) > 0.

Example: Let p = 0.60, ε = 0.1, r = 10, c = 0.1

At (0, 0), Xn = 0.17 for n ≤ 3, X4 = 0.18, X5 = 0.21 and X6 = 0.10.

Therefore at the beginning of a game, the plan is that one increase in effort

should be applied at n = 5 only if the score reaches (2, 3) or (3, 2). If the point

score reaches (2, 2), it can be calculated that now X4 = X5 = 0.36. Therefore

conditional on the score reaching (2, 2), the plan can be changed to apply this

one increase at (2, 2). The revised plan will have optimized the usage of this one

available increase.

The choice of ε, C and R can affect the values of Xn. Table 9.1 represents X0

and X6 for different values of C, with ε and R fixed at 0.1 and 10 respectively

from the beginning of the game. Notice that for C < 0.2, X0 > X6, but for

C > 0.2, X0 < X6.

Suppose a combatant has a finite M increases in effort available for use in

the war. However there are costs C associated for applying an increase in effort

at a particular skirmish (and a reward R for winning the war). Where should a

combatant apply the increases to maximize on the expected payoff throughout

the war?
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C X0 X6

0.10 0.17 0.10
0.15 0.12 0.09
0.20 0.07 0.07
0.25 0.02 0.06
0.30 -0.03 0.04

Table 9.1: Values of X0 and X6 for different values of C, with ε and R fixed at
0.1 and 10 respectively from the beginning of the game

Equation 9.4.1 can be extended to K levels of nesting for any biformat, to

solve the warfare problem, similar to the way equations and formulations were

derived in Chapter 5 for the limited resources/no cost problem.

The unlimited resources/cost and limited resources/no cost problems can be

solved from the limited resources/cost problem. For example, in one level of nest-

ing, this is directly connected to Equation 9.4.1. In the unlimited resources/cost

problem, the probability or reaching future score lines is always unity, since there

are an unlimited number of increases available. Therefore, N(a, b|g, h) = 1 and

Equation 9.4.1 simplifies to: Xn = RεI(a, b)−C, which resembles Equation 9.3.1

if Xn > 0. In the limited resources/no cost problem, the cost of applying an

increase in effort is 0, but there is some positive reward R for winning the overall

war (this is assumed to be unity in Equation 5.4.1). Therefore Equation 9.4.1

simplifies to Xn = ε
∑

a+b=n W (a, b|g, h), which resembles Equation 5.4.1. Clearly

an unlimited resources/no cost problem is unbounded.

9.5 Psychological momentum

Suppose for each combatant that if it is ahead on skirmishes, battles or campaigns,

it gains an increase in probability by increasing p0 to p0 + ε, where p0 represents
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the probability of a combatant winning a skirmish, battle or campaign when the

skirmish, battle or campaign score is (0, 0). This increase in probability may be

a result of psychological momentum. For a best-of-5 set advantage match (or

its equivalence in warfare), this problem is identical to the revised Markov chain

model of Chapter 8 for α > 0, where it was shown that a player with M increases

in effort to apply in the match, should apply these increases on every set of the

match to optimize the usage of the M available increases.

A somewhat different model for psychological momentum could be where each

combatant gains an increase in probability by ε after a winning a prior event, such

that:

p0 = p

pi = p + ε, if player A won the previous event

pi = p− ε, if player A lost the previous event

where pi represents the probability of combatant A winning a skirmish, battle or

campaign when i skirmishes, battles or campaigns are fought.

In general, this model is no longer a Markov process, since the skirmishes,

battles and campaigns are now dependent on each other.

We will analyze this model analytically for a best-of-3 set tiebreaker match

(or the equivalent scoring structure in warfare). The probability P (a, b) of a

combatant winning from (0, 0) becomes:

P (0, 0) = p(p+ε)+p(1−(p+ε))(p−ε)+(1−p)(p−ε)(p+ε) = p2(3−2p)+ε2(2p−1).

Other conditional probabilities of winning the war are:

P (1, 0) = 2p− p2 + ε2

P (0, 1) = p2 − ε2
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The probabilities of reaching campaign scores in the war N(a, b) are:

N(0, 0) = 1

N(1, 0) = p

N(0, 1) = 1− p

N(1, 1) = p(1− p− ε) + (1− p)(p− ε) = 2p− 2p2 − ε

N(1, 1) is used in the calculation of P (1, 1), such that:

P (1, 1) = p(1−p−ε)
2p−2p2−ε

(p− ε) + (1−p)(p−ε)
2p−2p2−ε

(p + ε) = (p−ε)(2p−2p2−2pε+ε)
2p−2p2−ε

The importance of campaigns in the war I(a, b) are:

I(0, 0) = P (1, 0)− P (0, 1) = 2p− 2p2 + 2ε2

I(1, 0) = P (2, 0)− P (1, 1) = 1− (p−ε)(2p−2p2−2pε+ε)
2p−2p2−ε

I(0, 1) = P (1, 1)− P (0, 2) = (p−ε)(2p−2p2−2pε+ε)
2p−2p2−ε

I(1, 1) = P (2, 1)− P (1, 2) = 1

The weighted importance of campaigns in the war W (a, b) are:

W (0, 0) = N(0, 0)I(0, 0) = 2p− 2p2 + 2ε2

W (1, 0) + W (0, 1) = N(1, 0)I(1, 0) + N(0, 1)I(0, 1) = p + (1−2p)(p−ε)(2p−2p2−2pε+ε)
2p−2p2−ε

W (1, 1) = N(1, 1)I(1, 1) = 2p− 2p2 − ε

It can be shown for all p that W (0, 0) > W (1, 0)+W (0, 1) > W (1, 1). There-

fore using this momentum model, it is optimal to apply one increase in effort at

zero campaigns fought, to try and establish an early lead in the war.

9.6 Two-person zero-sum game

The problems presented in this chapter so far, have assumed that only one com-

batant can apply an increase in effort throughout the war. We now model the
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situation where both combatants can apply an increase in effort, which is rep-

resented by a two-person zero-sum game. For a best-of-3 set tiebreaker match,

either combatant can apply an increase in effort at zero, one, or two campaigns

fought, resulting in a total of 9 possibilities. An increase in effort by ε at a

campaign fought from combatant A, results in increasing p to p + ε (p + ε < 1),

and an increase in effort by α at a campaign fought from combatant B, results in

decreasing p to p−α (p−α > 0), where p represents the probability of combatant

A winning a campaign. For the time being, it is assumed that both combatants

must decide before the war has begun, which campaign an increase is to be ap-

plied, and cannot change this choice throughout the war. Table 9.2 represents

the probabilities of combatant A winning the war when an increase in effort is

applied at the various campaigns fought, where IA and IB represent an increase

in effort at a campaign fought by combatants A and B respectively. Notice that

when both combatants apply an increase in effort on the same campaign fought,

the probability of combatant A winning the war is the same. Similarly, when

both combatants apply an increase in effort on different campaigns fought, the

probability of combatant A winning the war is the same. When:

p2(3− 2p) + 2p(1− p)(ε− α) + αε(2p− 1) > p2(3− 2p) + 2p(1− p)(ε− α)

⇒ αε(2p− 1) > 0

⇒ p > 1
2

Similarly when:

p2(3− 2p) + 2p(1− p)(ε− α) + αε(2p− 1) < p2(3− 2p) + 2p(1− p)(ε− α)

⇒ p < 1
2
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IA IB Probability of combatant A winning
0 0 p2(3− 2p) + 2p(1− p)(ε− α)
1 0 p2(3− 2p) + 2p(1− p)(ε− α) + αε(2p− 1)
0 1 p2(3− 2p) + 2p(1− p)(ε− α) + αε(2p− 1)
1 1 p2(3− 2p) + 2p(1− p)(ε− α)
2 0 p2(3− 2p) + 2p(1− p)(ε− α) + αε(2p− 1)
0 2 p2(3− 2p) + 2p(1− p)(ε− α) + αε(2p− 1)
1 2 p2(3− 2p) + 2p(1− p)(ε− α) + αε(2p− 1)
2 1 p2(3− 2p) + 2p(1− p)(ε− α) + αε(2p− 1)
2 2 p2(3− 2p) + 2p(1− p)(ε− α)

Table 9.2: Probability of combatant A winning the war when an increase in effort
is applied by both combatants at a campaign fought in a war

The increase in probability of winning for the better combatant when an

increase in effort for both combatants is applied on different campaigns, is a

result of the variability about the overall mean, as presented in Chapter 5. Let

X = p2(3−2p)+2p(1−p)(ε−α) and Y = p2(3−2p)+2p(1−p)(ε−α)+αε(2p−1).

Let strategy Ki (K ε {A,B}, i ε {0, 1, 2}) refer to combatant K applying an

increase in effort at i campaigns fought. The game theory matrix is represented

by:

B0 B1 B2

A0 X Y Y

A1 Y X Y

A2 Y Y X

This matrix can easily be solved and the results indicate that combatants

A and B should apply mixed strategies of A:(1
3
, 1

3
, 1

3
) and B:(1

3
, 1

3
, 1

3
). The value

(v) of the game is then 1
3
X + 2

3
Y . For example if p = 0.25, ε = α = 0.1, then

X = 0.15625, Y = 0.15125 and v = 0.1529.

Suppose either combatant can now alter their strategies as the war is in

progress. When should either combatant apply an increase in effort to optimize

the usage of their available increase?
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Consider the following analysis. Suppose at the start of the war, combatant

A decides to apply an increase in effort at zero campaigns fought, and combatant

B decides to apply an increase in effort at two campaigns fought. After the

first campaign has been fought, combatant B now has a decision to make on

whether to stay with the initial strategy, by applying an increase in effort at

two campaigns fought, or change strategies and apply an increase in effort at

one campaign fought. As previously calculated in Chapter 5, combatant B has

the same probability of winning the war by applying an increase at one or two

campaigns fought. Therefore combatant B could change their initial strategy by

applying an increase in effort at one campaign fought, and have optimized the

usage of their available increase. Similarly, if combatant B decides at the start of

the war to apply an increase in effort at zero campaigns fought, and combatant

A decides to apply an increase in effort at two campaigns fought, then combatant

A could change their initial strategy by applying an increase in effort at one

campaign fought, and have optimized the usage of their available increase. This

analysis is summarized as follows:

1. Both combatants are to apply an increase in effort at zero campaigns fought

with probability of 1
3
.

2. If one combatant applies an increase in effort at zero campaigns fought,

then the other combatant can decide to apply an increase in effort at either

one or two campaigns fought. If neither combatant increased their effort at

zero campaigns fought, then both combatants are to apply an increase in

effort at one campaign fought with probability of 1
2
.

3. If the war reaches (1, 1) and neither combatant has applied their increase

in effort, then the increase in effort by both combatants must be applied at



173

this state of the war.

Note that the mixed strategies of A:(1
3
, 1

3
, 1

3
) and B:(1

3
, 1

3
, 1

3
), still gives an

optimal solution.

A best-of-3 set match could be extended to a best-of-n set match in the case

n odd by proving the following conjecture:

Suppose both combatants can apply one increase in effort in a best-of-n set

match (n: odd integer). An increase in effort by ε at a campaign fought from

combatant A, results in increasing p to p + ε (p + ε < 1), and an increase in

effort by α at a campaign fought from combatant B, results in decreasing p to

p− α (p− α > 0), where p represents the probability of combatant A winning a

campaign. Then an optimal strategy for both combatants is to decide at the start

of the war to apply the increase in effort with equal probability at n campaigns

fought, where the probability of applying the increase in effort at a campaign is

given by 1
n
. The value of the game is given by 1

n
X + n−1

n
Y , where X represents

the probability of combatant A winning the war when an increase in effort by

each combatant is applied at the same campaign fought, and Y represents the

probability of combatant A winning the war when an increase in effort by each

combatant is applied at different campaigns fought.

9.7 Summary

The Defence Science of Technology Organization (DSTO) were interested in gain-

ing insights into warfare by analyzing the scoring structure of tennis. The non-

equivalence of value of the points depending on the current score in the game, set

and match has been investigated in Chapter 5 for a tennis match. The problem

has been extended in this chapter by introducing costs for applying an increase
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in effort. This form of the problem is more applicable to warfare. A model has

been investigated into which the effect of morale or other psychological effects

has been added. By setting up a model where a combatant gains an increase in

probability for the next campaign, by winning the prior campaign, it was shown

that a combatant should apply an increase in effort at zero campaigns fought to

try and establish an early lead in the war.

There were other problems considered in this thesis that also gain insights into

strategies of warfare. In chapter 5 it was shown that variability about an overall

mean for a best-of-3 set match gave an increased probability of winning the match

for the better player, and a decreased probability for the weaker player. This

result has interesting outcomes to modelling the situation where both combatants

can apply an increase in effort in a war. By analyzing a best-of-3 set match, where

each combatant can apply one increase in effort, gave a mixed strategy solution,

where an optimal strategy for each combatant was given by A : (1
3
, 1

3
, 1

3
) and

B : (1
3
, 1

3
, 1

3
).



Chapter 10

CONCLUSIONS AND
FURTHER RESEARCH

This thesis has used mathematical models to analyze hierarchical games. Work

on the thesis commenced at the start of 2002. The main results of this research

arose from the 2003 mathematics in industry study group, where the Defence

Science of Technology Organization (DSTO) were interested in gaining insights

into warfare strategies by analyzing the sport of tennis. The subject matter

for the majority of the thesis has been directly related to tennis, and while a

generalization from tennis to hierarchical games comes about in Chapter 2, the

generalization to warfare is deferred until Chapter 9.

10.1 Conclusions

In Chapter 2, the underlying Markov chain model was developed to calculate

probabilities of winning, probabilities of reaching score lines and mean lengths

with the associated variances for any one level of nesting that exists in tennis.

Recurrence formulas with boundary conditions were set up in the model and

through the use of spreadsheets, numerical results were obtained. Modelling a

tennis match by this method was effective and straight forward to implement.
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Spreadsheet packages, such as Excel, enable relative and absolute referencing to

copy and paste formulas from one cell to another. To model a game of tennis, this

amounts to entering the boundaries conditions and then using the appropriate

referencing in a recurrence formula, one formula from one cell, is copied and

pasted into the other cells. This provides an excellent teaching application of

Markov chains to a statistics course, as both forward and backward recursion can

be demonstrated.

In Chapter 3, generating functions were used to calculate the mean, standard

deviation, and coefficients of skewness and kurtosis for any levels of nesting that

exist in tennis. Calculating the higher-order moments of skewness and kurtosis

are important in a tennis match for describing the shape of the distribution. This

is a result of the distribution representing the number of points played in a match

being positively skewed. Numerical results were obtained by using a mathemat-

ics software package. The critical property of cumulant generating functions is

that they are additive for linear combinations of independent random variables.

This simplifies the calculations for determining the parameters of the distribu-

tion for the number of points in a tiebreaker match. Similar formulas can also

be used to calculate the parameters of the distributions for the time duration in

a match. In Chapter 4, the concept of weighted-importance, as a generalization

of time-importance (Morris [50]) was introduced. The theorems and equations

developed for time-importance were now given in terms of weighted-importance.

Pollard [58] formulated theorems and equations that extended and gave alterna-

tive derivations to the work of Morris [50]. These were also re-presented in the

context of weighted-importance. A useful relationship between the importance

of points and the conditional probabilities of players winning a match was es-

tablished, saying that the differences in the probabilities of winning a match are
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more likely to be greater at important points than at unimportant points.

In Chapter 5, strategies on when a player should alter their effort throughout

a game, set or match to optimize the usage of the available increases in effort

was developed. It is shown that a player can increase their effort on any point

in a game before deuce, and they will have optimized the usage of this one

available increase. It is also shown that for the better player, varying effort about

the overall mean probability of winning a set, increases his chances of winning

the match. This result demonstrates that inconsistency in tennis, and sport in

general, can actually win more matches. The following situation often arises in

a tennis set because the server has a greater probability of winning than the

receiver: Suppose player A has one increase in effort available in a set, when the

set score reaches (5, 3), player B serving. It has been shown that player A should

aim to win with a score (6, 4) by conserving energy while player B is serving. If

it happens that the score reaches (5, 4) player A should increase his effort to win

his own serve and the set. This strategy dominates the alternative of expending

the energy to break player B’s serve and trying to win the set with a score (6, 3).

The following has also been shown: that a player ahead on sets, but behind in

the current set, may be better off to save energy to try and win the next set,

rather than expend additional energy in the current set.

In Chapter 6, estimated probabilities of winning service points as inputs to

our Markov chain model to predict a range of outcomes of tennis matches played

at the 2003 Australian Open was used. This was achieved by using standard

statistics published by the ATP and an equation is developed for combining one

player’s individual serving statistics with another player’s individual returning

statistics, when two given players meet. The predictions were compared against
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bookmaker prices, and there was some indication that we can generate a long-

term profit. Our model has advantages over the models previously developed in

the literature, in that it allows more flexibility to calculate a range of predicted

outcomes, and not just head-to-head predictions. Predicting the number of games

played in a match, which has applications to index betting, highlights this. We

were able to predict a long match between El Aynaoui and Roddick played at

the 2003 Australian Open, in the sense that out of all matches played at the

Australian Open, this match was most likely to go on the longest if an advantage

fifth set was obtained. Improvements to the predictions were also discussed. An

analysis of court surface used in grand slam tennis helps to explain why Australian

tennis players in recent years have performed better at the hard courts of the US

Open compared to the hard courts of the Australian Open. The analysis also

shows why Andre Agassi had a better chance of winning all four grand slams

compared to Pete Sampras, even though Sampras was expected to win more

grand slams overall.

In Chapter 7, it was demonstrated how to predict the winner for a match in

progress. Forecasting a tennis match in progress had been developed previously

in the literature, but we have taken this one step further, by incorporating a

Bayesian updating rule to update the prior estimates with what has actually

occurred during the match. The predictions are improved by using a Bayesian

updating rule. An example was given from the El Aynaoui versus Roddick match

played at the 2003 Australian Open. It was demonstrated how our model could

read in each point played in real-time and update the probabilities of winning

the current point, game, set and match for each player. This would provide

spectators with an objective based analysis on how the match is progressing and

this information could be transmitted via the internet, television or mobile phone
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technology. It was shown how our estimates of the sum of the probabilities of

players winning a point on serve, can be applied to setting bookmaker prices,

even though our predictions of two players winning a match do not account for

how players perform on different surfaces. This has been applied to a betting

system, where the punter bets on the point score in regular games of tennis. The

system has been running successfully since Wimbledon 2003.

In Chapter 8, a revised Markov chain model was formulated. A revised model

seemed necessary since there were on average 4.13 fewer games per match played

at the 2003 men’s Australian Open than predicted. Also, there were more 3 set

matches played than predicted and fewer 5 set matches. The revised model allows

for players that are ahead on sets, to increase their probability of winning the

set, compared to their probabilities of winning the first set. This revised model

shortens the number of games played in a match, increases the number of 3 set

matches played, decreases the number of 5 set matches played and gives more

positively skewed distributions for the number of sets played, but the probabilities

of winning the match from the outset remain relatively unchanged. Since the

importance at zero sets played becomes considerably greater with the revised

model, a player with an increase in effort to apply in one set of the match, would

be encouraged to apply the increase in the first set.

In Chapter 9, warfare is defined as an analog to tennis. A range of different

models for players to alter their effort is presented in this chapter. A limited

resources/no cost problem was modelled in Chapter 5, because a player had a

limited number of resources to apply throughout the match and there was no

monetary cost for applying a resource. The formulations to solve this problem

can be applied to any biformat, as defined by Miles [49]. There may be costs

involved for applying an increase in effort, an assumption that appears to be
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more realistic in a warfare conflict as opposed to a tennis match. When applying

a limited resources/cost problem to a game, the following strategy maximizes the

expected payoff throughout the game: For players at the beginning of a game,

the plan is that one increase in effort should be applied by a player only if the

score reaches 30-40 or 40-30. An unlimited resources/cost problem has also been

analyzed in this chapter, resulting in a closed form expression that can be applied

to any biformat to maximize on the expected payoff. A psychological momentum

model has been analyzed, where a combatant gains an increase in probability

for the next campaign, by winning the prior campaign. It was shown that a

combatant should apply an increase in effort at zero campaigns fought to try

and establish an early lead in the war. A two-person zero-sum game has been

analyzed for a best-of-3 set match, where each combatant can apply one increase

in effort throughout the war. The results gave a mixed strategy solution, where an

optimal strategy for each combatant was given by A : (1
3
, 1

3
, 1

3
) and B : (1

3
, 1

3
, 1

3
).

All the formulations developed throughout this chapter can be effectively applied

to a warfare conflict in real-time.

10.2 Further research

The DSTO proposed four problems to be solved at the 2003 mathematics in

industry study group. This thesis has investigated two of the four problems.

Further research could be done to investigate the other two problems:

• The effect on the probability of winning the match arising from depleting

available capability through the effort to win the point.

• The ability to generalize from tennis to a more complex game structure (i.e.

where there is not the convenience of discrete play events between just the
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two equivalent players or teams that are present in tennis.)

Brimberg et al. [5] model a hierarchical contest where the decision-maker has

three energy levels: base, medium and high. The models presented through-

out this thesis had two energy levels: base and high. Further research could

investigate the types of problems throughout this thesis by using three or more

energy levels. When modelling the limited resources/no cost problem in Chap-

ter 5, an analytical solution was simplified for two energy levels as a result of

Theorem 4.3.4. For modelling the limited resources/no cost problem for three or

more energy levels, simulation methods may be needed, since analytical methods

may become too difficult to compute. On the other hand, some of the methods

developed here may be tractable for continuous distributions of the level of effort.

As a particular example, it should be noted how an estimate of the duration of a

complete tennis match was determined from the distribution of the duration of a

point.

Bayesian methods to update prior estimates for a tennis match in progress

have been investigated in this thesis. The use of Bayesian methods can be applied

to other situations of tennis modelling. For example: Are there situations when

a player should serve two first serves, compared to the typical first and second

serve? The use of Bayesian statistics could identify such possibilities for a tennis

match in progress. Furthermore, a model could be developed that would give

some indication on where players should be placing the serve. i.e. left, right or

in the center of the court. These models require real-time point-by-point data.

Magnus and Klaassen [46, 47, 48] investigate some often-heard hypotheses

relating to the service in tennis, the final set in a tennis match and the effect of

new balls in tennis all based on 4 years of Wimbledon data. Similar tests could

be carried out based on the Australian Open point-by-point data.
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Bedford and Clarke [4] predict chances of winning tennis matches using an

exponential smoothing method based on the number of games and sets players

have reached in the past at the end of completed matches. Further work could

involve development of a rating system to compare players of all levels. In par-

ticular, this rating system could assist in choosing a limited number of junior

players for scholarships into the Australian Open Tennis Academy. This model

could also be used to investigate ratings and predictions in doubles. This would

have applications to selecting the best team and playing surface for the Davis

Cup.
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