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ABSTRACT

Long matches can cause problems for tournaments. For example, the starting times of 
subsequent matches can be substantially delayed causing inconvenience to players, 
spectators, officials and television scheduling. They can even be seen as unfair in the 
tournament setting when the winner of a very long match, who may have negative 
aftereffects from such a match, plays the winner of an average or shorter length match 
in the next round. Long matches can also lead to injuries to the participating players. 

One factor that can lead to long matches is the use of the advantage set as the fifth set, 
as in the Australian Open, the French Open and Wimbledon. Another factor is long 
rallies and a greater than average number of points per game. This tends to occur more 
frequently on the slower surfaces such as at the French Open. The mathematical method 
of generating functions is used to show that the likelihood of long matches can be 
substantially reduced by using the tiebreak game in the fifth set, or more effectively by 
using a new type of game, the 50-40 game, throughout the match. 
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1. INTRODUCTION

In recent years there have been a number of grand slam matches decided in long fifth 
sets. In the third round of the 2000 Wimbledon mens singles, Philippoussis defeated 
Schalken 20-18 in the fifth set. Ivanisevic defeated Krajicek 15-13 in the semi-finals of 
Wimbledon in 1998. In the quarter-finals of the 2003 Australian Open mens singles, 
Andy Roddick defeated Younes El Aynaoui 21-19 in the fifth set, a match taking 83 
games to complete and lasting a total duration of 5 hours. The night session containing 
this long match required the following match to start at 1 am. Long matches require 
rescheduling of following matches, and also create scheduling problems for media 
broadcasters. They arise because of the advantage set, which gives more chance of 
winning to the better player (Pollard and Noble, 2002), but has no upper bound on the 
number of games played. It may be in the interests of broadcasters and tournament 
organizers to decrease the likelihood of long tennis matches occurring. 

Pollard (1983) calculated the mean and variance of the duration of a best-of-three sets 
match of classical and tiebreaker tennis by using the probability generating function. It 
is well established that the mean and standard deviation completely describe the normal 
distribution. When a distribution is not symmetrical about the mean, the coefficients of 
skewness and kurtosis, as defined in Stuart and Ord (1987), are important to graphically 



interpret the shape of the distribution. This commonly has been done by using the 
probability or moment generating function. The cumulant generating function (taking 
the natural logarithm of the moment generating function), can also be used to calculate 
the parameters of the distribution in a tennis match. The cumulant generating function is 
particularly useful for calculating the parameters of distributions for the number of 
points in a tiebreaker match, since the critical property of cumulant generating functions 
is that they are additive for linear combinations of independent random variables. The 
layout of this paper is as follows. For convenience of the less mathematically inclined
we defer the presentation of the mathematics of generating functions applied to tennis 
till Section 3. Instead we will begin in Section 2 with a discussion on several aspects of 
long matches, relying on graphical results to advance our arguments as to how they 
might be curtailed. We aim to show that the likelihood of long matches can be 
substantially reduced by using the tiebreak game in the fifth set, or more effectively by 
the use of a new type of game, the 50-40 game (Pollard and Noble, 2004), throughout 
the match. In Section 4 we make some concluding remarks.

2. DISCUSSION OF THE PROBLEM (using graphical results)

Up until 1970 (approx), all tennis sets were played as advantage sets, where to win a set 
a player must reach at least 6 games and be ahead by at least 2 games. The tiebreaker 
game was introduced to shorten the length of matches. A tiebreaker game is played 
when the set score reaches 6-games all. However in three of the four grand slams 
(Australian Open, French Open and Wimbledon), an advantage set is still played in the 
deciding fifth set. Figure 1 represents a comparison of a match with 5 advantage sets 
(5adv), 5 tiebreaker sets (5tie) and 4 tiebreaker sets with a deciding advantage set 
(4tie1adv). The probability of each player winning a point on serve is given as 0.6 to 
represent averages in men’s tennis. The long tail given by the match with 5adv gives an 
indication as to why the tiebreaker game was introduced to the tennis scoring system. It 
is well known that the dominance of serve in men’s tennis has increased since the 
introduction of the tiebreaker game. This creates a problem when two big servers meet 
in a grand slam event where the deciding fifth set is played as an advantage set. Figure 2 
represents a match with 4tie1adv for different values of players winning points on serve.
It shows that for two strong servers winning 0.7 of points on serve, there is a long tail in 
the number of points played. In comparison with Figure 3, which represents a match 
with 5tie, the tail is substantially reduced for two players winning 0.7 of points on serve. 
Figure 4 represents a match with 5 tiebreaker sets, where a standard ‘deuce’ game is 
replaced by a 50-40 game. It shows an even greater improvement to reducing the 
number of points played in a match compared to Figure 3. In the 50-40 game the server 
has to win the standard 4 points, while the receiver only has to win 3 points. Such a 
game requires at most 6 points.



Figure 1: Distribution of a match with different scoring systems
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Figure 2: Distribution of an advantage match (4tie1adv) for different values of players 
winning points on serve
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Figure 3: Distribution of a tiebreaker match (5tie) for different values of players 
winning points on serve
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Figure 4: Distribution of a tiebreaker match (5tie) for different values of players 
winning points on serve, by using 50-40 games instead of standard ‘deuce’ games
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3. THE MATHEMATICS OF GENERATING FUNCTIONS

3.1 MODELLING A TENNIS MATCH

3.1.1 FORWARD RECURSION

The state of a tennis match between two players is represented by a scoreboard. The 
scoreboard shows the points, games and sets won by each player, and is updated after 
each point has been played. It is assumed that the conditional probability of the server 
winning the point depends only on the data shown on the scoreboard. This enables the 
progress of the match to be modelled using forward recursion. An additional assumption 
is that the probabilities of each player winning a point on his own service remain 
constant throughout the match.

3.1.2 DEVELOPMENT OF GENERATING FUNCTIONS OF DISTRIBUTIONS

The forward recursion enables the probabilities of various possible scoreboards to be 
calculated. These probabilities can be collected in the form of probability generating
functions, or moment generating functions (using the transformation v = eu).

Lemma: If X and Y are independent random variables and Z = X + Y then: 
mZ(t) = mX(t) * mY (t).

It becomes convenient at times to take logarithms, and work in terms of cumulant 
generating functions, since KZ(t) = KX(t) + KY (t).

The higher order cumulants depend on powers of the scale for the random variable, and 
for the purposes of communication it is useful to transform them into non-dimensional 
statistics (i.e. numbers) such as the coefficients of variation, skewness and kurtosis.

3.1.3 THE INVERSION OF THE CUMULANTS USING NORMAL POWER
APPROXIMATION



This gives a continuous approximation to a discrete distribution (Pesonen, 1975). The 
formula is asymptotic and works reasonably well for unimodal distributions with the 
coeffiecient of skewness less than 2 and the coefficient of kurtosis less than 6. i.e. tails 
die off at least as fast as the exponential distribution.

3.2 THE NUMBER OF POINTS IN A GAME

Let X be a random variable of the number of points played in a game. Let fpg
A (x) 

represent the distribution of the number of points played in a game for player A serving, 
where fpg

A (x) = P(X = x). This gives the following:

fpg
A (4) = Npg

A (4, 0) + Npg
A (0, 4)

fpg
A (5) = Npg

A (4, 1) + Npg
A (1, 4)

fpg
A (6) = Npg

A (4,2) + Npg
A (2, 4)

fpg
A (x) = Npg

A (3, 3)[p2
A + (1 - pA)2][2pA(1 - pA)] (x-8)/2 , if x = 8, 10, 12, .....

where:
Npg

A(a,b) represents the probability of reaching point score (a,b) in a game for player A
serving.
pA represents the probability of player A winning a point on serve.

Croucher (1986) gives algebraic expressions for calculating Npg
A (a,b).

Let m(t) denote the moment generating function X. Generating functions can be used to 
describe a distribution, such as fpg

A(x) for all x. It is well established (Stuart and 
Ord,1987) that the mean, variance, coefficient of skewness and coefficient of kurtosis of 
X can be obtained from generating functions.

The moment generating function for the number of points in a game for player A 
serving, mpg

A (t), becomes:

∑x etxfpg
A(x)=e4tfpg

A(4)+e5tfpg
A(5)+e6tfpg

A(6)+[Npg
A(3,3)(1-Npg

A(1,1))e8t] / [1-Npg
A(1,1)e2t]

The mean number of points in a game Mpg
A , with the associated variance Vpg

A are 
calculated from the moment generating function using Mathematica and given as:

M pg
A =

)]A- p(1A2p- [1

1}-1]- 2)A- p(12
A)[6pA- p(1A4{p

V pg
A =

2)]A- p(1A2p-[1

)))]2)A- p(12
A12p)(5A- p(1A- p)(3 A- p(1A12p- )(1A- p(1A- p)[1A- p(1A4p +

Similar expressions can be obtained for the coefficient of skewness Spg
A, and the 

coefficient of kurtosis Kpg
A .



Let Upg
A represent the standard deviation of the number of points in a game for player A

serving. Let Cpg
A represent the coefficient of variation of the number of points in a game

for player A serving. It follows that Upg
A = √V pg

A and Cpg
A = Upg

A / Mpg
A. 

Table 1: The parameters of the distributions of points in a game for different values of 
pA

pA Mpg
A Upg

A Cpg
A Spg

A Kpg
A

0.50 6.75 2.77 0.41 2.16 6.95
0.55 6.68 2.73 0.41 2.17 7.01
0.60 6.48 2.59 0.40 2.20 7.21
0.65 6.19 2.37 0.38 2.25 7.59
0.70 5.83 2.10 0.36 2.34 8.25
0.75 5.45 1.78 0.33 2.46 9.27

Table 1 represents Mpg
A , Upg

A , Cpg
A , Spg

A and Kpg
A for different values of pA. Notice 

that the mean and standard deviation are greatest when pA = 0.50, but the coefficients of 
skewness and kurtosis are greatest when pA approaches 1 or 0. The generating functions 
to follow are for player A serving first in the tiebreaker game or set.

The moment generating function for the number of points in a tiebreaker game, mpgT
A(t)

becomes:

m pgT
A (t) = e7tf pgT

A (7)+e8tf pgT
A(8)+e9tfpgT

A(9)+e10tfpgT
A(10)+e11tf pgT

A(11)+e12tfpgT
A(12)+

N pg T
A (6,6)(1-N pg T

A (1,1))e14t / [1-N pg T
A (1,1)e2t]

where:
f pgT

A(x) represents the distribution of the number of points played in a tiebreaker game.
N pgT

A(a,b) represents the probability of reaching point score (a,b) in a tiebreaker game.

The moment generating functions for the number of games in a tiebreaker set, mgsT
A(t)

and advantage set, mgs
A(t) become:

mgsT
A(t)=e6tfgsT

A(6)+e7tfgsT
A(7)+e8tfgsT

A(8)+e9tfgsT
A(9)+e10tfgsT

A(10)+e12tfgsT
A(12)+

e13tfgsT
A(13)

mgs
A(t) = e6tfgs

A(6)+e7tfgs
A(7)+e8tfgs

A(8)+e9tfgs
A(9)+e10tfgs

A(10)+ 
Ngs

A (5,5)(1-Ngs
A(1,1))e12t / [1-Ngs

A (1,1)e2t]

where:
fgsT

A (x) represents the distribution of the number of games played in a tiebreaker set.
fgs

A (x) represents the distribution of the number of games played in an advantage set.
Ngs

A(c, d) represents the probability of reaching (c,d) in an advantage set.

3.3 THE NUMBER OF POINTS IN A SET

3.3.1 THE PARAMETERS OF DISTRIBUTIONS OF THE NUMBER OF
POINTS IN A SET



Let mpg
A+(t) and mpg

A-(t) be the moment generating functions of the number of points in 
a game when player A wins and loses a game on serve respectively. Let mpg

B+(t) and 
mpg

B-(t) be the moment generating functions of the number of points in a game when 
player B wins and loses a game on serve respectively. Let s(c, d) be the moment 
generating function of the number of points in a set conditioned on reaching game score 
(c,d). It can be shown that 
s(6,1) = 3[mpg

A+(t)]3[mpg
B-(t)]

2[mpg
A+(t)mpg

B+(t) + mpg
A-(t)m

pg
B-(t)] and 

s(1,6) =3[mpg
A-(t)]

3[mpg
B+(t)]2[mpg

A+(t)mpg
B+(t)+mpg

A-(t)m
pg

B-(t)]. 
Similar conditional moment generating functions can be obtained for reaching all score 
lines (c, d) in a set. The moment generating function for the number of points in a 
tiebreaker set becomes:

mpsT
A(t) = NgsT

A(6, 0)s(6,0) + NgsT
A (6,1)s(6,1) + NgsT

A (6,2)s(6,2) + NgsT
A (6,3)s(6,3) 

+NgsT
A(6,4)s(6,4)+NgsT

A(7,5)s(7,5)+NgsT
A(0,6)s(0,6)+NgsT

A(1,6)s(1,6)+NgsT
A(2,6)s(2,6)+

NgsT
A(3,6)s(3,6) + NgsT

A(4,6)s(4,6) +NgsT
A (5,7)s(5,7) + NgsT

A (6,6)s(6,6)mpgT
A (t)

A similar moment generating function can be obtained for the number of points in an
advantage set.

Let Mps
A , Ups

A , Cps
A ,  Sps

A and Kps
A represent the mean, standard deviation, and 

coefficientsof variation, skewness and kurtosis for the number of points in an advantage 
set. Let MpsT

A , UpsT
A , CpsT

A , SpsT
A and KpsT

A represent the mean, standard deviation, and 
coefficients of variation, skewness and kurtosis for the number of points in a tiebreaker 
set. Table 2 represents Mps

A , Ups
A , Cps

A , Sps
A , Kps

A , MpsT
A , UpsT

A , CpsT
A , SpsT

A and 
KpsT

A for different values of pA and pB. The table covers values in the interval            
0.50 ≤ pA ≤ pB ≤ 0.75 as this is the main area of interest for men’s tennis. It can be 
observed that: Mps

A > MpsT
A , Ups

A > UpsT
A , Cps

A > CpsT
A, Sps

A > SpsT
A and Kps

A > KpsT
A .

The mean number of points in a set is affected by the mean number of points in a game 
and the mean number of games in a set. The mean number of points in a game is 
greatest when pA or pB = 0.50. For a tiebreaker set, when pA = pB = 0.50, Mpg

A = Mpg
B = 

6.75, MgsT
A =9.66 and MpsT

A = 65.83. When pA = pB = 0.70, Mpg
A = Mpg

B = 5.83, MgsT
A = 

10.94 and MpsT
A = 66.22. For this latter case, even though the mean length of games is 

shorter, the mean number of points in a tiebreaker set overall is greater since more 
games are expected to be played. Both players have a 0.90 probability of holding serve, 
which means that very few breaks of serve will occur and there is a 0.38 probability of 
reaching a tiebreaker. This is further exemplified in an advantage set, where for pA = pB

= 0.70, Mps
A = 86.43. This is also highlighted by the coefficients of variation, skewness 

and kurtosis being much greater for an advantage set, compared to a tiebreaker set, 
when pA and pB are both “large”.

3.3.2 APPROXIMATING THE PARAMETERS OF DISTRIBUTIONS OF
THE NUMBER OF POINTS IN A SET

The moment generating function for the number of points in an advantage set mps
A(t),

when pA = 1 - pB, becomes:



mps
A(t)=[fgs

A(6)](mpg
AB)6+[fgs

A(7)](mpg
AB)7+[fgs

A(8)](mpg
AB)8+[fgs

A(9)](mpg
AB)9+

[fgs
A(10)](mpg

AB)10+Ngs
A (5,5)(1-Ngs

A (1,1))(mpg
AB)12 / [1-Ngs

A (1,1)(mpg
AB)2]

where: mpg
AB(t) = [mpg

A(t)+mpg
B (t)]/2 is the average (in this case equal) of two moment 

generating functions.

Table 2: The parameters of the distributions of points in a tiebreaker and advantage set
for different values of pA and pB

pA pB MpsT
A UpsT

A CpsT
A SpsT

A KpsT
A Mps

A Ups
A Cps

A Sps
A Kps

A

0.50 0.50 65.83 16.54 0.25 0.55 -0.04 67.71 21.15 0.31 1.62 4.75
0.50 0.60 61.99 15.97 0.26 0.65 0.18 63.39 19.76 0.31 1.71 5.39
0.50 0.70 54.73 13.75 0.25 0.85 0.88 55.39 16.01 0.29 1.89 7.46
0.50 0.75 51.64 12.44 0.24 0.89 1.20 52.06 14.08 0.27 1.92 8.44
0.60 0.60 65.59 16.03 0.24 0.55 -0.18 69.32 24.92 0.36 2.12 7.27
0.60 0.70 63.08 14.99 0.24 0.58 -0.15 68.35 27.97 0.41 2.60 10.22
0.60 0.75 60.67 14.32 0.24 0.63 -0.05 66.01 28.12 0.43 2.83 11.98
0.70 0.70 66.22 14.96 0.23 0.25 -0.81 86.43 53.11 0.61 2.47 8.67
0.75 0.75 67.59 13.74 0.20 -0.15 -0.82 125.50 101.81 0.81 2.24 7.22

Taking the natural logarithm of the moment generating function gives an alternative
generating function known as the cumulant generating function. Let κpg

A(t)=ln[mpg
A(t)]

represent the cumulant generating function for the number of points in a game. This
relationship can be inverted to give mpg

A (t) = exp(κpg
A(t)).

The moment generating function, mps
A (t), can be written as:

mps
A(t)=fgs

A(6)exp(6κpg
AB(t))+fgs

A(7)exp(7κpg
AB(t))+fgs

A(8)exp(8κpg
AB(t))+fgs

A(9)
exp(9κpg

AB(t))+fgs
A(10)exp(10κpg

AB(t))+Ngs
A(5,5)exp(12κpg

AB(t))[1-Ngs
A(1,1)]/[1-Ngs

A(1,1)
exp(2κpg

AB(t))], when pA = 1 - pB

where: κpg
AB(t) = [κpg

A(t)+ κpg
B (t)]/2 is the average (in this case equal) of two cumulant 

generating functions.

This can be expressed as:

mps
A (t) = mgs

A (κpg
AB(t))                                                                                                  (1)

Similarly, the following result is established for mpsT
A (t), when pA = 1 - pB:

mpsT
A(t)=mgsT

A(κpg
AB(t))+NgsT

A(6,6)exp(12κpg
AB(t))(exp(κpgT

AB(t))-exp(κpg
AB(t)))            (2)                       

Notice the last term does not vanish due to the difference in the scoring system for a
tiebreaker game compared with a regular game. Equations (1) and (2) can be used to 
obtain approximate results for the parameters of distributions for the number of points 
in a set, when pA is not equal to 1 - pB.



3.4 THE NUMBER OF POINTS IN A MATCH

From this point an advantage match is considered as a match where the first four sets
played are tiebreaker sets and the fifth set is an advantage set.

The moment generating functions for the number of points in an advantage and 
tiebreaker match, mpm(t) and mpmT(t), when pA = 1 - pB become:

mpmT(t) = msm(κpsT
AB (t))

mpm(t) = msm(κpsT
AB (t)) + Nsm(2,2) exp(4κpsT

AB (t)) (exp(κps
AB (t)) - exp(κpsT

AB (t)))

where: κpsT
AB (t) = [κpsT

A (t)+ κ
psT

B (t)] / 2 and κps
AB (t) = [κps

A (t)+ κ
ps

B (t)] / 2

The following approximation results can be established for the number of points in a
match, similar to the approximation results established for the number of points in a set:

mpmT(t) ≈ msm(κpsT
AB (t)) for all values of pA and pB.

mpm(t) ≈ msm(κpsT
AB (t)) + Nsm(2,2) exp(4κpsT

AB (t)) (exp(κps
AB (t)) - exp(κpsT

AB (t))) for all 
values of pA and pB.

Approximation results for distributions of points in a match, could also be established
for tennis doubles by using the above results established for singles. The probability of a 
team winning a point on serve is estimated by the averages of the two players in the
team.

When pA = 1-pB, the distribution of number of points played each set if player A serves
first in the set, is equal to the number of points played each set if player B serves first in
the set. This leads to the following result:

The number of points played each set in a match are independent, if pA = 1 - pB.

Suppose Z = X + Y , where X and Y are independent, then it is well known that
mZ(t) = E[eZt] = E[eXt]E[eY t] = mX(t)mY (t). By taking logarithms it follows that
κZ(t) = κX(t) + κY (t).

An extension of this property of cumulants is given by the following theory (Brown, 
1977) and can be applied to points in a tiebreaker match when the number of points 
played each set in a match are independent. When the independence assumption fails to 
hold the theory remains approximately correct according to the approximation result 
established for points in a tiebreaker match.

Theorem

If Z = X1 + X2 +……… + XN where Xi are i.i.d. then κZ(t) = κN(κX(t))
Taking the derivatives of the result and setting t = 0 gives the following useful results in
terms of cumulants:



k(1)
Z = k(1)

N k(1)
X

k(2)
Z = k(2)

N [k(1)
X ]2 + k(1)

N k(2)
X

k(3)
Z = 3k(1)

X k(2)
N k(2)

X + [k(1)
X ]3k(3)

N + k(1)
N k(3)

X

k(4)
Z = 3k(2)

N [k(2)
X ]2 + 6[k(1)

X ]2k(2)
X k(3)

N + 4k(1)
X k(2)

N k(3)
X + [k(1)

X ]4k(4)
N + k(1)

N k(4)
X

For example the mean number of points in a tiebreaker match, MpmT, with the associated
variance, V pmT, can be calculated from the cumulant generating function as:

MpmT = MpsTMsm

V pmT = V sm(MpsT )2 +MsmV psT

where:
MpsT represents the mean number of points in a tiebreaker set
Msm represents the mean number of sets in a tiebreaker match
V psT represents the variance of the number of points in a tiebreaker set
V sm represents the variance of the number of sets in a tiebreaker match

Let Mpm , Upm , Cpm , Spm and Kpm represent the mean, standard deviation, and 
coefficients of variation, skewness and kurtosis for the number of points in an 
advantage match. Let MpmT , UpmT , CpmT , SpmT and KpmT represent the mean, standard 
deviation, and coefficients of variation, skewness and kurtosis for the number of points 
in a tiebreaker match. Tables 3 and 4 represent the exact parameters of the distributions 
for an advantage and tiebreaker match for different values of pA and pB. The results 
agree with Pollard (1983) for a best-of-three sets tiebreaker match. It shows that the 
mean, standard deviation, coefficients of variation, skewness and kurtosis of the number 
of points played are greater for an advantage match, compared to a tiebreaker match. 
Also included in the tables are the probabilities of the match lasting for at least n points, 
represented by P(n) for an advantage match and Q(n) for a tiebreaker match. These 
probabilities were calculated using the NP-expansion technique (Pesonen, 1987). Notice 
that when pA and pB become “large”, the probability of playing at least 400 points in an 
advantage match is considerably greater than for a tiebreaker match. This is some 
justification as to why an advantage match can seemingly never end with two strong 
servers.

Table 5 represents the exact parameters of distributions for a tiebreaker and an 
advantage match using 50-40 games, along with the probability of a match going 
beyond 300 points. For an extreme case, when pA = pB = 0.75, the probability of an 
advantage match going beyond 300 points is 0.06. In comparison to Tables 3 and 4, the 
probability of an advantage or tiebreaker match going beyond 300 points is 0.38. This 
shows that replacing standard ‘deuce’ games with 50-40 games, substantially decreases 
the likelihood of long matches occurring.

It is often the case that by shortening the length of matches, decreases the probability of 
winning for the better player. However this is not necessarily the case as shown by
replacing standard ‘deuce’ games with 50-40 games. Table 6 represents the probabilities
of winning under four different scoring systems, for different values of pA and pB. 



Notice when pA=0.75 and pB = 0.70, the probability of player A (the stronger player) 
winning using 50-40 games is greater than using standard ‘deuce’ games.

Table 3: The parameters of the distributions of points in an advantage match for 
different values of pA and pB

pA pB Mpm Upm Cpm Spm Kpm P(300) P(350) P(400)
0.50 0.50 272.27 62.58 0.23 0.13 -0.54 0.33 0.12 0.02
0.55 0.55 272.10 62.55 0.23 0.15 -0.51 0.33 0.12 0.02
0.60 0.60 271.96 62.85 0.23 0.21 -0.37 0.33 0.12 0.02
0.65 0.65 273.48 65.13 0.24 0.40 0.14 0.32 0.12 0.03
0.70 0.70 280.72 74.16 0.26 0.92 1.96 0.34 0.15 0.06
0.75 0.75 300.52 103.49 0.34 1.89 6.23 0.38 0.22 0.12

Table 4: The parameters of the distributions of points in a tiebreaker match for different
values of pA and pB

pA pB MpmT UpmT CpmT SpmT KpmT Q(300) Q(350) Q(400)
0.50 0.50 271.56 61.40 0.23 0.06 -0.67 0.33 0.11 0.02
0.55 0.55 271.25 61.12 0.23 0.06 -0.67 0.33 0.11 0.02
0.60 0.60 270.56 60.42 0.22 0.06 -0.69 0.32 0.10 0.01
0.65 0.65 270.52 59.77 0.22 0.05 -0.73 0.32 0.10 0.01
0.70 0.70 273.14 59.64 0.22 0.02 -0.79 0.34 0.11 0.01
0.75 0.75 278.81 59.54 0.21 -0.04 -0.88 0.38 0.13 0.02

Table 5: The parameters of the distributions of points in a tiebreaker and advantage
match using 50-40 games for different values of pA and pB

pA pB MpmT UpmT CpmT SpmT KpmT Q(300) Mpm Upm Cpm Spm Kpm P(300)

0.50 0.50 198.43 44.01 0.22 0.05 -0.71 0.01 198.94 44.93 0.23 0.14 -0.54 0.02
0.55 0.55 199.71 44.39 0.22 0.05 -0.71 0.02 200.09 45.08 0.23 0.11 -0.58 0.02
0.60 0.60 201.93 44.89 0.22 0.05 -0.71 0.02 202.31 45.58 0.23 0.11 -0.58 0.02

0.65 0.65 205.18 45.52 0.22 0.05 -0.71 0.02 205.71 46.47 0.23 0.14 -0.53 0.03
0.70 0.70 209.79 46.40 0.22 0.06 -0.71 0.03 210.71 48.10 0.23 0.21 -0.38 0.04
0.75 0.75 216.64 47.81 0.22 0.06 -0.73 0.05 218.71 51.70 0.24 0.39 0.12 0.06

Table 6: The probabilities of winning a tennis match under different scoring systems
standard games 50-40 games

standard games 50-40 games
pA pB pm pmT pm pmT

0.51 0.50 0.567 0.567 0.554 0.554
0.55 0.50 0.800 0.799 0.754 0.754
0.60 0.50 0.952 0.951 0.918 0.917
0.61 0.60 0.565 0.564 0.557 0.557
0.65 0.60 0.789 0.785 0.764 0.763
0.70 0.60 0.941 0.938 0.927 0.926
0.71 0.70 0.560 0.558 0.559 0.559
0.75 0.70 0.772 0.760 0.775 0.772



4. CONCLUSION

The mathematical methods of generating functions have been used to calculate the 
parameters of distributions of the number of points in a tennis match. The results show 
that the likelihood of long matches can be substantially reduced by using the tiebreak 
game in the fifth set, or more effectively by using the 50-40 game throughout the match. 

We used the number of points played in a match as a measure of its length. This 
measure is related to the time duration of the match and avoids the complications of 
delays between points, at change of serve, at change of end, injury time and weather 
delays. Further work could involve calculating the time duration of a match from the 
results presented in Subsection 3.4. This could then be used to calculate the probabilities 
of the match going beyond a given amount of time. This would provide commentators 
and tournament officials with very useful information on when the match is going to 
finish.
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